
An Improved Tight Closure Algorithm

for Integer Octagonal Constraints⋆

Roberto Bagnara1, Patricia M. Hill2, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Integer octagonal constraints (a.k.a. Unit Two Variables Per
Inequality or UTVPI integer constraints) constitute an interesting class
of constraints for the representation and solution of integer problems
in the fields of constraint programming and formal analysis and verifi-
cation of software and hardware systems, since they couple algorithms
having polynomial complexity with a relatively good expressive power.
The main algorithms required for the manipulation of such constraints
are the satisfiability check and the computation of the inferential closure
of a set of constraints. The latter is called tight closure to mark the dif-
ference with the (incomplete) closure algorithm that does not exploit the
integrality of the variables. In this paper we present and fully justify an

O(n3) algorithm to compute the tight closure of a set of UTVPI integer
constraints.

1 Introduction

Integer octagonal constraints, also called Unit Two Variables Per Inequality
(UTVPI) integer constraints —that is, constraints of the form ax + by ≤ d
where a, b ∈ {−1, 0, +1}, d ∈ Z and the variables x and y range over the
integers—, constitute an interesting subclass of linear integer constraints ad-
mitting polynomial solvability. The place which these constraints occupy in the
complexity/expressivity spectrum is, in fact, peculiar. Concerning complexity,
relaxing the restriction of (at most) two variables per constraint and/or relax-
ing the restriction on coefficient make the satisfiability problem NP-complete
[13, 14]. Concerning expressivity, integer octagonal constraints can be used for
representing and solving many integer problems in the field of constraint pro-
gramming, such as temporal reasoning and scheduling [13]. In the field of formal
analysis and verification of software and hardware systems, these constraints
have been successfully used in a number of applications [5, 6, 9, 18].

⋆ This work has been partly supported by MURST project “AIDA — Abstract In-
terpretation: Design and Applications,” and by a Royal Society (UK) International
Joint Project (ESEP) award.



When (integer or rational) octagonal constraints are used to build abstract
domains3 —such as the Octagon Abstract Domain implemented in the library
with the same name [19] or the domain of octagonal shapes defined in [2] and
implemented in the Parma Polyhedra Library [4]— the most critical operation
is not the satisfiability check (although very important in constraint program-
ming) but closure by entailment. This is the procedure whereby a set of octagonal
constraints is augmented with (a finite representation of) all the octagonal con-
straints that can be inferred from it. The closure algorithms for rational octago-
nal constraints are sound but not complete for integer octagonal constraints. The
latter require so-called tight closure algorithms that fully exploit the integrality
of the variables.

In 2005, Lahiri and Musuvathi proposed an O(n3) algorithm for the sat-
isfiability check of a (non trivially redundant) system of UTVPI integer con-
straints [15]. They also sketched (without formal definitions and proofs) a tight
closure algorithm with the same worst-case complexity bound. Still in 2005,
Miné proposed a modification of the strong (i.e., non-tight) closure algorithm
for rational octagonal constraints and argued that this would provide a good and
efficient approximation of tight closure [18, 19]. In the same year we showed that
the algorithm for computing the strong closure of rational octagonal constraints
as described in [16, 18, 19] could be simplified with a consequential improvement
in its efficiency [2, 3]. In this paper we show that our result can be extended so
as to apply to integer octagonal constraints. This enables us to present and fully
justify an O(n3) algorithm to compute the tight closure of a set of UTVPI inte-
ger constraints. In particular, this is the first time that an algorithm achieving
such a complexity bound is provided with a proof of correctness.

In Section 2 we briefly introduce the terminology and notation adopted
throughout the paper and we recall a few standard results on weighted graphs. In
Section 3, we give the definition of rational-weighted octagonal graphs and recall
some of the results that were established in [2, 3]. In Section 4, we extend these
results to the case of integer-weighted octagonal graphs. Finally, in Section 5 we
conclude and briefly discuss future work.

2 Preliminaries

Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘<’ such that
d < +∞ for each d ∈ Q. Let N be a finite set of nodes. A rational-weighted
directed graph (graph, for short) G in N is a pair (N , w), where w : N×N → Q∞

is the weight function for G.
Let G = (N , w) be a graph. A pair (ni, nj) ∈ N × N is an arc of G if

w(ni, nj) < +∞; the arc is proper if ni 6= nj . A path π = n0 · · ·np in G is a
non-empty and finite sequence of nodes such that (ni−1, ni) is an arc of G, for

3 In abstract interpretation theory [8], an abstract domain is an algebraic structure
formalizing a set of assertions endowed with an approximation relation, plus various
operations that correctly approximate the operations of some concrete domain, i.e.,
the domain being abstracted/approximated.



all i = 1, . . . , p. Each node ni where i = 0, . . . , p and each arc (ni−1, ni) where
i = 1, . . . , p is said to be in the path π. The length of the path π is the number
p of occurrences of arcs in π and denoted by ‖π‖; the weight of the path π is
∑p

i=1 w(ni−1, ni) and denoted by w(π). The path π is simple if each node occurs
at most once in π. The path π is proper if all the arcs in it are proper. The path
π is a proper cycle if it is a proper path, n0 = np and p ≥ 2. If π1 = n0 · · ·nh

and π2 = nh · · ·np are paths, where 0 ≤ h ≤ p, then the path concatenation
π = n0 · · ·nh · · ·np of π1 and π2 is denoted by π1 :: π2; if π1 = n0n1 (so that
h = 1), then π1 :: π2 will also be denoted by n0 ·π2. Note that path concatenation
is not the same as sequence concatenation.

A graph (N , w) can be interpreted as the system of potential constraints

C :=
{

ni − nj ≤ w(ni, nj)
∣

∣ ni, nj ∈ N
}

.

Hence, the graph (N , w) is consistent if and only if the system of constraints it
represents is satisfiable in Q, i.e., there exists a rational valuation ρ : N → Q

such that, for each constraint (ni − nj ≤ d) ∈ C, the relation ρ(ni) − ρ(nj) ≤ d
holds. It is well-known that a graph is consistent if and only if it has no negative
weight cycles (see [7, Section 25.5] and [22]).

The set of consistent graphs in N is denoted by G. This set is partially
ordered by the relation ‘E’ defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 E G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

We write G ⊳ G′ when G E G′ and G 6= G′. When augmented with a bottom
element ⊥ representing inconsistency, this partially ordered set becomes a non-
complete lattice G⊥ =

〈

G ∪ {⊥}, E,⊓,⊔
〉

, where ‘⊓’ and ‘⊔’ denote the finitary
greatest lower bound and least upper bound operators, respectively.

Definition 1. (Closed graph.) A consistent graph G = (N , w) is closed if the
following properties hold:

∀i ∈ N : w(i, i) = 0; (1)

∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2)

The (shortest-path) closure of a consistent graph G in N is

closure(G) :=
⊔

{

G′ ∈ G
∣

∣ G′
E G and G′ is closed

}

.

Although the lattice of rational graphs is not complete, it will include the infinite
least upper bound defining the closure of a rational graph G. Informally, this
must hold since the weights of the least upper bound graph must be linear
combinations of the rational weights of G and hence are also rational.

When trivially extended so as to behave as the identity function on the
bottom element ⊥, shortest-path closure is a kernel operator (monotonic, idem-
potent and reductive) on the lattice G⊥, therefore providing a canonical form.

The following lemma recalls a well-known result for closed graphs (for a proof,
see Lemma 5 in [3]).

Lemma 1. Let G = (N , w) ∈ G be a closed graph. Then, for any path π = i · · · j
in G, it holds that w(i, j) ≤ w(π).



3 Rational Octagonal Graphs

We assume in the following that there is a fixed set V = {v0, . . . , vn−1} of n
variables. The octagon abstract domain allows for the manipulation of octag-
onal constraints of the form avi + bvj ≤ d, where a, b ∈ {−1, 0, +1}, a 6= 0,
vi, vj ∈ V , vi 6= vj and d ∈ Q. Octagonal constraints can be encoded using po-
tential constraints by splitting each variable vi into two forms: a positive form
v+

i , interpreted as +vi; and a negative form v−i , interpreted as −vi. Then any
octagonal constraint avi + bvj ≤ d can be written as a potential constraint
v − v′ ≤ d0 where v, v′ ∈ {v+

i , v−i , v+
j , v−j } and d0 ∈ Q. Namely, an octagonal

constraint such as vi + vj ≤ d can be translated into the potential constraint
v+

i − v−j ≤ d; alternatively, the same octagonal constraint can be translated into

v+
j − v−i ≤ d. Furthermore, unary (octagonal) constraints such as vi ≤ d and

−vi ≤ d can be encoded as v+
i − v−i ≤ 2d and v−i − v+

i ≤ 2d, respectively.
From now on, we assume that the set of nodes is N := {0, . . . , 2n−1}. These

will denote the positive and negative forms of the variables in V : for all i ∈ N , if
i = 2k, then i represents the positive form v+

k and, if i = 2k+1, then i represents
the negative form v−k of the variable vk. To simplify the presentation, for each
i ∈ N , we let ı denote i + 1, if i is even, and i − 1, if i is odd, so that, for all
i ∈ N , we also have ı ∈ N and ı = i. Then we can rewrite a potential constraint
v − v′ ≤ d where v ∈ {v+

k , v−k } and v′ ∈ {v+
l , v−l } as the potential constraint

i − j ≤ d in N where, if v = v+
k , i = 2k and if v = v−k , i = 2k + 1; similarly, if

v′ = v+
l , j = 2l and if v′ = v−l , j = 2l + 1.

It follows from the above translations that any finite system of octagonal
constraints, translated into a set of potential constraints in N as above, can
be encoded by a graph G in N . In particular, any finite satisfiable system of
octagonal constraints can be encoded by a consistent graph in N . However,
the converse does not hold since in any valuation ρ of an encoding of a set of
octagonal constraints we must also have ρ(i) = −ρ(ı), so that the arcs (i, j)
and (, ı) should have the same weight. Therefore, to encode rational octagonal
constraints, we restrict attention to consistent graphs over N where the arcs in
all such pairs are coherent.

Definition 2. (Octagonal graph.) A (rational) octagonal graph is any con-
sistent graph G = (N , w) that satisfies the coherence assumption:

∀i, j ∈ N : w(i, j) = w(, ı). (3)

The set O of all octagonal graphs (with the usual addition of the bottom element,
representing an unsatisfiable system of constraints) is a sub-lattice of G⊥, sharing
the same least upper bound and greatest lower bound operators. Note that, at
the implementation level, coherence can be automatically and efficiently enforced
by letting arc (i, j) and arc (, ı) share the same representation. This also implies
that an octagonal constraint such as vi + vj ≤ d will always be translated into
both v+

i − v−j ≤ d and v+
j − v−i ≤ d.

When dealing with octagonal graphs, observe that the coherence assump-
tion links the positive and negative forms of variables. A closure by entailment



procedure should consider, besides transitivity, the following inference rule:

i − ı ≤ d1  − j ≤ d2

i − j ≤
d1 + d2

2

(4)

Thus, the standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs.

Definition 3. (Strongly closed graph.) An octagonal graph G = (N , w) is
strongly closed if it is closed and the following property holds:

∀i, j ∈ N : 2w(i, j) ≤ w(i, ı) + w(, j). (5)

The strong closure of an octagonal graph G in N is

S-closure(G) :=
⊔

{

G′ ∈ O
∣

∣ G′
E G and G′ is strongly closed

}

.

When trivially extended with a bottom element, strong closure is a kernel oper-
ator on the lattice of octagonal graphs.

A modified closure procedure is defined in [16], yielding strongly closed oc-
tagonal graphs. A significant efficiency improvement can be obtained thanks to
the following theorem (for a proof, see Theorem 2 in [3]).

Theorem 1. Let G = (N , w) be a closed octagonal graph. Consider the graph
GS = (N , wS), where wS is defined, for each i, j ∈ N , by

wS(i, j) := min

{

w(i, j),
w(i, ı)

2
+

w(, j)

2

}

.

Then GS = S-closure(G).

Intuitively, the theorem states that strong closure can be obtained by appli-
cation of any shortest-path closure algorithm followed by a single local prop-
agation step using the constraint inference rule (4). In contrast, in the strong
closure algorithm of [16], the outermost iterations of (a variant of) the Floyd-
Warshall shortest-path algorithm are interleaved with n applications of the in-
ference rule (4), leading to a more complex and less efficient implementation.

4 Integer Octagonal Graphs

We now consider the case of integer octagonal constraints, i.e., octagonal con-
straints where the bounds are all integral and the variables are only allowed to
take integral values. These can be encoded by suitably restricting the codomain
of the weight function of octagonal graphs.

Definition 4. (Integer octagonal graph.) An integer octagonal graph is an
octagonal graph G = (N , w) having an integral weight function:

∀i, j ∈ N : w(i, j) ∈ Z ∪ {+∞}.



As an integer octagonal graph is also a rational octagonal graph, the con-
straint system that it encodes will be satisfiable when interpreted to take values
in Q. However, when interpreted to take values in Z, this system may be unsat-
isfiable since the arcs encoding unary constraints can have an odd weight; we say
that an octagonal graph is Z-consistent if its encoded integer constraint system
is satisfiable. For the same reason, the strong closure of an integer octagonal
graph does not provide a canonical form for the integer constraint system that
it encodes and we need to consider the following tightening inference rule:

i − ı ≤ d

i − ı ≤ 2⌊d/2⌋
. (6)

Definition 5. (Tightly closed graph.) An octagonal graph G = (N , w) is
tightly closed if it is a strongly closed integer octagonal graph and the following
property holds:

∀i ∈ N : w(i, ı) is even. (7)

The tight closure of an octagonal graph G in N is

T-closure(G) :=
⊔

{

G′ ∈ O
∣

∣ G′
E G and G′ is tightly closed

}

.

By property (7), any tightly closed integer octagonal graph will encode a
satisfiable integer constraint system and is therefore Z-consistent. Moreover,
since the encoding of any satisfiable integer constraint system will result in a Z-
consistent integer octagonal graph G that satisfies property (7), its tight closure
T-closure(G) will also be Z-consistent. This means that, if G is not Z-consistent,
then T-closure(G) =

⊔

∅ = ⊥; that is, the tight closure operator computes ei-
ther a tightly closed graph or the bottom element. Therefore, tight closure is a
kernel operator on the lattice of octagonal graphs, as was the case for strong
closure.

An incremental closure procedure for obtaining the tight closure of an oc-
tagonal graph was defined in [13] and improved in [12]. The algorithm, which is
also presented and discussed in [18, Section 4.3.5], maintains the tight closure
of a system of octagonal constraints by performing at most O(n2) operations
each time a new constraint is added: thus, for m constraints, the worst case
complexity is O(mn2). In particular, for the case of a dense system of octagonal
constraints where m ∈ O(n2), the worst case complexity is O(n4).

The following theorem shows that a more efficient tight closure algorithm can
be obtained by a simple modification to the improved strong closure algorithm
of Theorem 1. Basically, inference rule (6) must be applied to ensure property
(7) holds before applying inference rule (4).

Theorem 2. Let G = (N , w) be a closed integer octagonal graph. Consider the
graph GT = (N , wT), where wT is defined, for each i, j ∈ N , by

wT(i, j) := min

{

w(i, j),
⌊w(i, ı)

2

⌋

+
⌊w(, j)

2

⌋

}

.

Then, if GT is an octagonal graph, GT = T-closure(G).



procedure tight closure if consistent(var w [0 . . 2n − 1] [0 . . 2n − 1])

{ Classical Floyd-Warshall: O(n3) }

for k := 0 to 2n − 1 do

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
`

w[i, j], w[i, k] + w[k, j]
´

;

{ Tight coherence: O(n2) }

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
“

w[i, j], floor
`

w[i, ı]/2
´

+ floor
`

w[, j]/2
´

”

;

Fig. 1. A O(n3) tight closure algorithm for Z-consistent integer octagonal graphs

Figure 1 shows the pseudo-code for a O(n3) tight closure algorithm based on
Theorem 2 and on the classical Floyd-Warshall shortest-path closure algorithm.
Note that the pseudo-code in Figure 1 assumes that the data structure recording
the weight function w, here denoted to be similar to a two-dimensional array,
automatically implements the coherence assumption for octagonal graphs (i.e.,
property (3) of Definition 2).

In the case of sparse graphs, a better complexity bound can be obtained by
modifying the code in Figure 1 so as to compute the shortest path closure using
Johnson’s algorithm [7]: the worst case complexity of such an implementation will
be O(n2 log n + mn), which significantly improves upon the O(mn2) worst case
complexity of [12, 13] when, e.g., m ∈ Θ(n). However, as observed elsewhere [18,
23], some of the targeted applications (e.g., static analysis) typically require the
computation of graphs that are dense, so that the Floyd-Warshall algorithm is
often a better choice from a practical perspective.

It is possible to define an incremental variant of the tight closure algorithm
in Figure 1, which is simply based on the corresponding incremental version of
the Floyd-Warshall shortest path closure algorithm. In such a case, we obtain
the same worst case complexity of [12, 13].

The proof of Theorem 2 relies on a few auxiliary lemmas. The first two were
also used in [3] for the formal proof of Theorem 1 above (for their detailed proofs,
see Lemmas 9 and 10 in [3]).

Lemma 2. Let G = (N , w) be an octagonal graph, G⋆ = (N , w⋆) := closure(G)
and (z1, z2) be an arc in G⋆. Then there exists a simple path π = z1 · · · z2 in G
such that w⋆(z1, z2) = w(π).

Lemma 3. Let G = (N , w) be a closed octagonal graph and i, j ∈ N be such
that i 6=  and 2w(i, j) ≥ w(i, ı) + w(, j). Let G⋆

s = (N , w⋆
s ) := closure(Gs)



where Gs := (N , ws) and, for each h1, h2 ∈ N ,

ws(h1, h2) :=

{

(

w(i, ı) + w(, j)
)

/2, if (h1, h2) ∈
{

(i, j), (, ı)
}

;

w(h1, h2), otherwise.

Let also z1, z2 ∈ N . Then one or both of the following hold:

w⋆
s (z1, z2) = w(z1, z2);

2w⋆
s (z1, z2) ≥ w(z1, z1) + w(z2, z2).

Informally, Lemma 3 states that if inference rule (4) is applied to a closed oc-
tagonal graph, then the resulting graph can be closed just by making further
applications of inference rule (4). Note that, if G is an integer octagonal graph
and property (7) holds, then the derived graph Gs will also be an integer oc-
tagonal graph. We now state a new lemma for integer octagonal graphs showing
that when inference rule (6) is applied we obtain a similar conclusion to that for
Lemma 3.

Lemma 4. Let G = (N , w) be a closed integer octagonal graph and i ∈ N .
Let G⋆

t := closure(Gt) where Gt := (N , wt) is an octagonal graph and, for each
h1, h2 ∈ N ,

wt(h1, h2) :=

{

w(i, ı) − 1, if (h1, h2) = (i, ı);

w(h1, h2), otherwise.
(8)

Let G⋆
t = (N , w⋆

t ) and z1, z2 ∈ N . Then one or both of the following hold:

w⋆
t (z1, z2) = w(z1, z2), (9)

w⋆
t (z1, z2) ≥

⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

. (10)

Proof. By hypothesis and Definition 1, G⋆
t E Gt E G. If (z1, z2) is not an arc in

G⋆
t , then w⋆

t (z1, z2) = +∞; thus, as G⋆
t E G, we also have w(z1, z2) = +∞ and

hence property (9) holds. Suppose now that (z1, z2) is an arc in G⋆
t . Then we

can apply Lemma 2, so that there exists a simple path π = z1 · · · z2 in Gt such
that w⋆

t (z1, z2) = wt(π).
Suppose first that wt(π) = w(π). Then, as G is closed, by Lemma 1 we

obtain w(π) ≥ w(z1, z2) so that w⋆
t (z1, z2) ≥ w(z1, z2). However G⋆

t E G so that
w⋆

t (z1, z2) ≤ w(z1, z2) and therefore property (9) holds.
Secondly, suppose that wt(π) 6= w(π). Then, by Equation (8), (i, ı) must be

an arc in π, so that
π = π1 :: (i ı) :: π2, (11)

where π1 = z1 · · · i, π2 = ı · · · z2 are simple paths in Gt that do not contain the
arc (i, ı). Therefore, by Equation (8), we have wt(π1) = w(π1), wt(π2) = w(π2).

For π = j0 · · · jp any path in a graph in N , let π denote the path p · · · 0.
Consider (11) and let

π′

1 = π1 :: (i ı) :: π1, π′

2 = π2 :: (i ı) :: π2.



As G is an octagonal graph, we have w(π1) = w(π1) and w(π2) = w(π2) so that

w(π′

1) = 2w(π1) + w(i, ı), w(π′

2) = 2w(π2) + w(i, ı).

As G is closed, by Lemma 1,

w(π′

1) ≥ w(z1, z1), w(π′

2) ≥ w(z2, z2)

so that

w(π1) +
w(i, ı)

2
≥

w(z1, z1)

2
, w(π2) +

w(i, ı)

2
≥

w(z2, z2)

2
.

Therefore

wt(π) = wt(π1) + wt(i, ı) + wt(π2)

= w(π1) +
w(i, ı) − 1

2
+ w(π2) +

w(i, ı) − 1

2

≥
w(z1, z1)

2
−

1

2
+

w(z2, z2)

2
−

1

2

≥
⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

.

Hence, as w⋆
t (z1, z2) = wt(π), we obtain property (10), as required. ⊓⊔

The next result uses Lemmas 3 and 4 to derive a property relating the weight
functions for a closed integer octagonal graph and its tight closure.

Lemma 5. Let G = (N , w) be a closed integer octagonal graph such that GT =
(N , wT) := T-closure(G) is an octagonal graph and let z1, z2 ∈ N . Then one or
both of the following hold:

wT(z1, z2) = w(z1, z2); (12)

wT(z1, z2) =
⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

. (13)

Proof. The proof is by contraposition; thus we assume that neither (12) nor (13)
hold. Without loss of generality, let the graph G be E-minimal in the set of all
closed integer octagonal graphs such that T-closure(G) = GT and for which
neither (12) nor (13) hold. Clearly the negation of (12) implies that G 6= GT, so
that GT ⊳ G.

As G is closed but not tightly closed, by Definitions 3 and 5, it follows that
there exist i, j ∈ N such that either

(i) i =  and w(i, ı) is odd; or
(ii) property (7) holds and 2w(i, j) > w(i, ı) + w(, j).



Consider graph G1 = (N , w1) where the weight function w1 is defined, for all
h1, h2 ∈ N , by

w1(h1, h2) :=

{

⌊

w(i,ı)
2

⌋

+
⌊

w(,j)
2

⌋

, if (h1, h2) ∈
{

(i, j), (, ı)
}

;

w(h1, h2), otherwise.

Let G⋆
1 = closure(G1). By Definitions 1, 3 and 5,

GT
E G⋆

1 E G1 ⊳ G. (14)

Thus T-closure(G⋆
1) = GT so that, by the minimality assumption on G, one or

both of the following hold:

wT(z1, z2) = w⋆
1(z1, z2); (15)

wT(z1, z2) =
⌊w⋆

1(z1, z1)

2

⌋

+
⌊w⋆

1(z2, z2)

2

⌋

. (16)

As GT 6= ⊥, by (14), G1 is consistent. Therefore, by construction, G1 is
an integer octagonal graph. If property (i) holds for i, j, then Lemma 4 can be
applied and, if property (ii) holds for i, j, then Lemma 3 can be applied and also,
since property (7) holds, both w1(z1, z1) and w(z2, z2) are even. Hence, letting
G⋆

1 := (N , w⋆
1), one or both of the following hold:

w⋆
1(z1, z2) = w(z1, z2); (17)

w⋆
1(z1, z2) ≥

⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

. (18)

Again by Lemmas 3 and 4,

w⋆
1(z1, z1) ≥ 2

⌊w(z1, z1)

2

⌋

,

w⋆
1(z2, z2) ≥ 2

⌊w(z2, z2)

2

⌋

;

since the lower bounds for w⋆
1(z1, z1) and w⋆

1(z2, z2) are even integers, we obtain

⌊w⋆
1(z1, z1)

2

⌋

+
⌊w⋆

1(z2, z2)

2

⌋

≥
⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

. (19)

Suppose first that (15) and (17) hold. Then by transitivity we obtain (12),
contradicting the contrapositive assumption for G.

If (15) and (18) hold, then it follows

wT(z1, z2) ≥
⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

. (20)

On the other hand, if (16) holds, then, by (19), we obtain again property (20).
However, by Definitions 3 and 5 we also have

wT(z1, z2) ≤
⌊w(z1, z1)

2

⌋

+
⌊w(z2, z2)

2

⌋

.



By combining this inequality with (20) we obtain (13), contradicting the contra-
positive assumption for G. ⊓⊔

Proof (of Theorem 2). Let GT := T-closure(G). By definition of GT, GT EG
so that T-closure(GT)EGT. As GT is an octagonal graph, GT is consistent, and
hence GT 6= ⊥; let GT = (N , wT). Letting i, j ∈ N , to prove the result we need
to show that wT(i, j) = wT(i, j). Let kij :=

⌊

w(i, ı)/2
⌋

+
⌊

w(, j)/2
⌋

.
By Definitions 1, 3 and 5, it follows that both properties wT(i, j) ≤ w(i, j)

and wT(i, j) ≤ kij hold so that, by definition of wT, we have wT(i, j) ≤ wT(i, j).
By Lemma 5, wT(i, j) = w(i, j) and/or wT(i, j) = kij . Therefore since, by
definition, wT(i, j) = min

{

w(i, j), kij

}

, we obtain wT(i, j) ≤ wT(i, j). ⊓⊔

It follows from the statement of Theorem 2 that an implementation based
on it also needs to check the consistency of GT. In principle, one could apply
again a shortest-path closure procedure so as to check whether GT contains some
negative weight cycles. However, a much more efficient solution is obtained by
the following result.

Theorem 3. Let G = (N , w) be a closed integer octagonal graph. Consider the
graphs Gt = (N , wt) and GT = (N , wT) where, for each i, j ∈ N ,

wt(i, j) :=

{

2⌊w(i, j)/2⌋, if j = ı;

w(i, j), otherwise;
(21)

wT(i, j) := min

{

w(i, j),
⌊w(i, ı)

2

⌋

+
⌊w(, j)

2

⌋

}

. (22)

Suppose that, for all i ∈ N , wt(i, ı) + wt(ı, i) ≥ 0. Then GT is an octagonal
graph.

This result is a corollary of the following result proved in [15, Lemma 4].

Lemma 6. Let G = (N , w) be an integer octagonal graph with no negative
weight cycles and Gt = (N , wt), where wt satisfies (21), have a negative weight
cycle. Then there exists i, ı ∈ N and a cycle π = (i · π1 · ı) :: (ı · π2 · i) in G such
that w(π) = 0 and the weight of the shortest path in G from i to ı is odd.

Proof (of Theorem 3). The proof is by contradiction; suppose GT is not
an octagonal graph; then by Definitions 1, 3 and 5, GT is inconsistent. We
show that Gt is also inconsistent. Again, we assume to the contrary that Gt is
consistent and derive a contradiction. Let i, j ∈ N . By (21), we have wt(i, j) ≤
w(i, j) and wt(i, ı)/2 + wt(, j)/2 = kij , where kij :=

⌊

w(i, ı)/2
⌋

+
⌊

w(, j)/2
⌋

.
Letting S-closure(Gt) = (N , wS

t ), we have, by Definition 3, wS
t (i, j) ≤ wt(i, j)

and wS
t (i, j) ≤ wt(i, ı)/2 + wt(, j)/2. Thus wS

t (i, j) ≤ min
(

w(i, j), kij

)

. As this
holds for all i, j ∈ N , by (22), S-closure(Gt)EGT, contradicting the assumption
that Gt was consistent. Hence Gt is inconsistent and therefore contains a negative
weight cycle.

By Lemma 6, there exists i, ı ∈ N and a cycle π = (i · π1 · ı) :: (ı · π2 · i)
in G such that w(π) = 0 and the weight of the shortest path in G from i to



ı is odd. As G is closed, w(i, ı) ≤ w(i · π1 · ı) and w(ı, i) ≤ w(ı · π2 · i). Thus
w(i, ı) + w(ı, i) ≤ w(π) = 0. Moreover, (iı) is a path and hence the shortest
path from i to ı so that w(iı) is odd; hence, by (21), w(i, ı) = wt(i, ı) + 1 and
w(ı, i) ≥ wt(ı, i). Therefore wt(i, ı) + wt(ı, i) < 0. ⊓⊔

function tight closure(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

{ Initialization: O(n) }

for i := 0 to 2n − 1 do w[i, i] := 0;

{ Classical Floyd-Warshall: O(n3) }

for k := 0 to 2n − 1 do

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
`

w[i, j], w[i, k] + w[k, j]
´

;

{ Check for Q-consistency: O(n) }

for i := 0 to 2n − 2 step 2 do

if w[i, i] < 0 return false;

{ Tightening: O(n) }

for i := 0 to 2n − 1 do

w[i, ı] := 2 · floor
`

w[i, ı]/2
´

;

{ Check for Z-consistency: O(n) }

for i := 0 to 2n − 2 step 2 do

if w[i, ı] + w[ı, i] < 0 return false;

{ Strong coherence: O(n2) }

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
`

w[i, j], w[i, ı]/2 + w[, j]/2
´

;

return true;

Fig. 2. A O(n3) tight closure algorithm for integer coherent graphs

The combination of the results stated in Theorems 2 and 3 (together with
the well known result for rational consistency) leads to an O(n3) tight closure
algorithm, such as that given by the pseudo-code in Figure 2, that computes
the tight closure of any (possibly inconsistent) coherent integer-weighted graph
returning the Boolean value ‘true’ if and only if the input graph is Z-consistent.



5 Conclusion and Future Work

We have presented and fully justified an O(n3) algorithm that computes the tight
closure of a set of integer octagonal constraints. The algorithm —which is based
on the extension to integer-weighted octagonal graphs of the one we proposed for
rational-weighted octagonal graphs [2, 3]— and its proof of correctness means the
issue about the possibility of computing the tight closure at a computational cost
that is asymptotically not worse than the cost of computing all-pairs shortest
paths is finally closed.

In the field of hardware and software verification, the integrality constraint
that distinguishes integer-weighted from rational-weighted octagonal graphs can
be seen as an abstraction of the more general imposition of a set of congruence
relations. Such a set can be encoded by an element of a suitable abstract domain
such as the non-relational congruence domain of [10] (that is, of the form x = a
(mod b)), the weakly relational zone-congruence domain of [17] (that is, also
allowing the form x − y = a (mod b)), the linear congruence domain of [11],
and the more general fully relational rational grids domain developed in [1]. The
combination of such domains with the abstract domain proposed in [2, 3] is likely
to provide an interesting complexity-precision trade-off. Future work includes
the investigation into such a combination, exploiting the ideas presented in this
paper.

References

1. R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A domain
for analyzing the distribution of numerical values. In G. Puebla, editor, Logic-based
Program Synthesis and Transformation, 16th International Symposium, volume
4407 of Lecture Notes in Computer Science, pages 219–235, Venice, Italy, 2007.
Springer-Verlag, Berlin.

2. R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for
weakly-relational numeric abstractions. In C. Hankin and I. Siveroni, editors,
Static Analysis: Proceedings of the 12th International Symposium, volume 3672
of Lecture Notes in Computer Science, pages 3–18, London, UK, 2005. Springer-
Verlag, Berlin.

3. R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for
weakly-relational numeric abstractions. Quaderno 399, Dipartimento di Matema-
tica, Università di Parma, Italy, 2005. Available at http://www.cs.unipr.it/

Publications/.
4. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Quaderno 457, Dipartimento di Matematica, Università di
Parma, Italy, 2006. Available at http://www.cs.unipr.it/Publications/. Also
published as arXiv:cs.MS/0612085, available from http://arxiv.org/.

5. V. Balasundaram and K. Kennedy. A technique for summarizing data access and
its use in parallelism enhancing transformations. In B. Knobe, editor, Proceed-
ings of the ACM SIGPLAN’89 Conference on Programming Language Design and
Implementation (PLDI), volume 24(7) of ACM SIGPLAN Notices, pages 41–53,
Portland, Oregon, USA, 1989. ACM Press.



6. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving
for predicate abstraction refinement. In R. Alur and D. Peled, editors, Computer
Aided Verification: Proceedings of the 16th International Conference, volume 3114
of Lecture Notes in Computer Science, pages 457–461, Boston, MA, USA, 2004.
Springer-Verlag, Berlin.

7. T. H. Cormen, T. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, MA, 1990.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

9. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyzer. In M. Sagiv, editor, Programming Languages and Systems,
Proceedings of the 14th European Symposium on Programming, volume 3444 of
Lecture Notes in Computer Science, pages 21–30, Edinburgh, UK, 2005. Springer-
Verlag, Berlin.

10. P. Granger. Static analysis of arithmetical congruences. International Journal of
Computer Mathematics, 30:165–190, 1989.

11. P. Granger. Static analysis of linear congruence equalities among variables of a pro-
gram. In S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proceedings
of the International Joint Conference on Theory and Practice of Software Devel-
opment, Volume 1: Colloquium on Trees in Algebra and Programming (CAAP’91),
volume 493 of Lecture Notes in Computer Science, pages 169–192, Brighton, UK,
1991. Springer-Verlag, Berlin.

12. W. Harvey and P. J. Stuckey. A unit two variable per inequality integer constraint
solver for constraint logic programming. In M. Patel, editor, ACSC’97: Proceedings
of the 20th Australasian Computer Science Conference, volume 19, pages 102–111.
Australian Computer Science Communications, 1997.

13. J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains.
In A. Borning, editor, Principles and Practice of Constraint Programming: Pro-
ceedings of the Second International Workshop, volume 874 of Lecture Notes in
Computer Science, pages 86–94, Rosario, Orcas Island, Washington, USA, 1994.
Springer-Verlag, Berlin.

14. J. C. Lagarias. The computational complexity of simultaneous Diophantine ap-
proximation problems. SIAM Journal on Computing, 14(1):196–209, 1985.

15. S. K. Lahiri and M. Musuvathi. An efficient decision procedure for UTVPI con-
straints. In B. Gramlich, editor, Frontiers of Combining Systems: Proceedings of
the 5th International Workshop, FroCoS 2005, volume 3717 of Lecture Notes in Ar-
tificial Intelligence, pages 168–183, Vienna, Austria, 2005. Springer-Verlag, Berlin.

16. A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working Con-
ference on Reverse Engineering (WCRE’01), pages 310–319, Stuttgart, Germany,
2001. IEEE Computer Society Press.

17. A. Miné. A few graph-based relational numerical abstract domains. In M. V.
Hermenegildo and G. Puebla, editors, Static Analysis: Proceedings of the 9th In-
ternational Symposium, volume 2477 of Lecture Notes in Computer Science, pages
117–132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

18. A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique, Paris, France, March 2005.

19. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.



20. G. Nelson and D. C. Oppen. Fast decision algorithms based on Union and Find. In
Proceedings of the 18th Annual Symposium on Foundations of Computer Science
(FOCS’77), pages 114–119, Providence, RI, USA, 1977. IEEE Computer Society
Press. The journal version of this paper is [21].

21. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356–364, 1980. An earlier version of this paper is [20].

22. V. R. Pratt. Two easy theories whose combination is hard. Memo sent to Nelson
and Oppen concerning a preprint of their paper [20], September 1977.

23. A. Venet and G. Brat. Precise and efficient static array bound checking for large
embedded C programs. In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation (PLDI’04), pages 231–242,
Washington, DC, USA, 2004. ACM Press.


