
Motivation
Did We Verify the Right Code?

Conclusion

Is the Code We Have Verified

What We Really Have Embedded?

Roberto Bagnara

http://bugseng.com

& Applied Formal Methods Laboratory
Department of Mathematics and Computer Science

University of Parma, Italy

11th Workshop on Automotive Software & Systems, Milan,
November 7th, 2013

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

http://bugseng.com

Motivation
Did We Verify the Right Code?

Conclusion

Outline

1 Motivation
(Critical) Software Is Buggy until Proved Correct
High-Quality Verification Tools Are Needed

2 Did We Verify the Right Code?
The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

3 Conclusion

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

(Critical) Software Is Buggy until Proved Correct
High-Quality Verification Tools Are Needed

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

(Critical) Software Is Buggy until Proved Correct
High-Quality Verification Tools Are Needed

Bugs Cause Frequent and Expensive Recalls in Automotive

year manufacturer model # recalled problem

2005 Toyota Prius 160,000 sudden stall or shut down

2008 Chrysler Jeep 24,535 automatic transmission

2008 Volkswagen Passat 4,079 unexpected acceleration

2010 GM CTS 12,662 front passenger knee airbag

2011 Jaguar X-type 17,678 cruise control

2012 BMW 7-Series 45,500 automatic transmission

2013 GM various 26,582 engine braking off

2013 Chrysler Jeep 409,000 airbags and seat belts

2013 Chrysler various 224,254 airbags deploy improperly

2013 Honda Fit Sport 43,782 vehicle stability assist

Nov 4! Honda Odyssey 344,000 vehicle stability control

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

(Critical) Software Is Buggy until Proved Correct
High-Quality Verification Tools Are Needed

And Worse Things

Okla. jury: Toyota liable in

acceleration crash

(By SEAN MURPHY / Associated Press / October 24, 2013)

OKLAHOMA CITY (AP) — Toyota Motor Corp. is liable for a
2007 crash that left one woman dead and another seriously injured
after a Camry suddenly accelerated, an Oklahoma jury decided
Thursday.

The jury awarded $1.5 million in monetary damages to Jean
Bookout, the driver of the car who was injured in the crash, and
$1.5 million to the family of Barbara Schwarz, 70, who died.

It also decided Toyota acted with “reckless disregard” for the
rights of others, a determination that sets up a second phase of
the trial on punitive damages that is scheduled to begin Friday.

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

(Critical) Software Is Buggy until Proved Correct
High-Quality Verification Tools Are Needed

High-Quality Verification Tools Are Needed

Tools of insufficient quality make things worse

They provide a false sense of security

They can decrease the overall quality of the produced software

They definitely increase development costs

In this talk

We substantiate the claim that quality software requires
quality tools. . .

. . . focusing on source code static verification tools

We will do so by showing some key features high-quality
verification tools should possess. . .

. . . along with the consequences of not possessing them

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

SCSV Tools’ Usability and Reliability Requirements

Different source code static verification (SCSV) tools have
different requirements. . .

. . . but they share most of them

Proper use of an SCSV tool requires

Identify and configure the verification task to be conducted

Identify and configure the sources that compose the software
system to be analyzed

Identify and configure the precise semantics of such sources

Identify and configure the way object code is produced and
manipulated to build executables

Configure the reports sought and establish their connection to
the running system

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

MISRA-C

A software development standard for the C programming
language

Objectives: facilitate code safety, portability and reliability of
embedded systems programmed in C

Developed by MISRA (Motor Industry Software Reliability
Association)

In widespread use in automotive, aerospace, railway, medical
devices, . . .

Now in its third edition: 1998, 2004, 2012

MISRA-C++ (2008) is an analogous standard for C++

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

USA Case No. CJ-2008-7969

A. But function[s] should [not call] themselves. [...] in the 2004
[MISRA C] standard this rule [...] is No. 16.2. So this is a
violation of the MISRA C rule.
Q. [Is] the violation of this rule related to unintended accelerations?
A. Yes.
[...]
A. Toyota also failed to comply with standards [...] Here I’m
talking about, for example, the MISRA C guidelines.
Q. And in the review of what Toyota had done did NASA [find]
any violation of these codes?
A. Yeah, NASA found a number of violations of MISRA rules.
Q. Did you find violations?
A. Yes. NASA looked at about 35 of the rules [...] they found over
7,000 violations [...] I checked the full set [...] and found more
than 80,000 violations in the 2005 Camry.

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Painful Way

Identify and configure the sources that compose the system

Study the build procedure and the used compilers; then figure out:

1 which files are compiled and how

2 the algorithm used to search the header files and how it is
influenced by the used compilers’ options

3 the predefined macros and how they are influenced by the
used compilers’ options

4 report everything in the tool configuration so as to ensure
that the analyzed code is the right one

Issues

Basically impossible to get right for the ordinary user

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Painful Way

Identify and configure the precise semantics of the sources

Study the build procedure and the used compilers; then figure out:

1 which of the used compiler options influence the semantics of
the program

2 (whether and) how such semantics can be captured in the
tool configuration

3 report everything in the tool configuration so as to ensure the
analyzed translation units and the compiled ones match

Issues

Very error-prone

Some tools are simply not configurable enough

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Painful Way

Identify and configure the way object code is manipulated

Study the build procedure and each tool used to manipulate object
code (compilers, linkers, librarians, . . .), then figure out:

1 where each object file comes from. . .

2 . . . tracking its creation, insertion into a library, extraction
from a library, . . . , without losing the relation with the
sources it comes from

3 report everything in the tool configuration so as to ensure the
analyzed code and the resulting executables match

Issues

Basically impossible to get right unless the build process is really
straightforward

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Painful Way

Obtain reports and establish their connection to the running system

1 Turn the tool output into the kind of report needed

2 Make sure the final report matches the running system

Issues

1 Often done by hand

2 Mission impossible if at least one of the mistakes previously
outlined has been committed

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Painful Way

Summarizing

1 This process is so flawed that there are no guarantees about
the MISRA-C:YYYY compliance of the running code

2 Still, it cost the user an enormous amount of time, pain and
frustration

3 All this is largely due to poor quality of the verification tool

A non-solution: bad for the user, bad for the industry

The vendor advertizes the product, per se, as certified

Nonsense for all industrial safety standards: qualification of a
tool is achieved in the precise context of a specific usage,
including the operational environment, the inputs definition,
the options used. . .

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Right Way

Identify and configure the sources that compose the system

Not necessary

How is this done?

The tool intercepts all invocations to the tool-chain
components and is able to interpret all arguments and options
passed to them

The tool embodies an abstract model of each tool-chain
component so that, e.g., header files will be searched the
same way they are searched by the compiler

The predefined macros are automatically extracted from the
compiler, using the right options

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Right Way

Identify and configure the precise semantics of the sources

Not necessary

How is this done?

The tool embodies an abstract model of all supported
compilers. . .

. . . which includes all the implementation-defined aspects of
the language. . .

. . . taking into account the compiler options that are used in
the actual compilation of each translation-unit

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Right Way

Identify and configure the way object code is manipulated

Not necessary

How is this done?

All the tool-chain components are intercepted

Their options and arguments are understood

Their effects are modeled by the tool

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Right Way

Obtain reports and establish their connection to the running system

Push a button and obtain the compliance matrix

How is this done?

The wanted compliance matrix format is part of the
configuration

Part of the deviation information is in the configuration:
which rules are switched off, which file are exempted from
which rules. . . all along with the corresponding justification

Part of the deviation information is in the code

Precise information about each violation has been collected by
the tool

The tool assembles all these pieces of evidence into a
complete and coherent compliance matrix

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Right Way

Obtain reports and establish their connection to the running system

Nothing to do: it is just a consequence of good design

How is this done?

The analysis process precisely matches the build process and
happens at the same time

Error-prone human activities have been reduced to the bare
minimum

Compliance matrices are automatically generated

Such reports may contain a cryptographic hash function of all
the sources compiled, the used libraries, the objects and the
executables generated; the complete version information of all
used tool-chain components; . . .

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Testing the Tool-Chain

MISRA-C:2004 rule 1.4 (required)

“The compiler/linker shall be checked to ensure that 31 character
significance and case sensitivity are supported for external
identifiers.”

Most tools on the market provide no support for this and
other rules. . .

. . . because they have no access to the actually used compilers
and linkers!

Intercepting the tool-chain components allows all sorts of
safety checks to be performed upon them

It also allows debugging the build procedure (e.g., against the
wrong/inconsistent use of compiler flags)

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

The Painful Way by Example
The Right Way by the same Example
Further Advantages of Doing the Right Thing

Example: MISRA-C:YYYY Compliance the Right Way

Summarizing

1 Full automation of whatever is automatizable

2 Much increased reliability thanks to the direct interaction with
the tool-chain

3 So-called personalities can be forgotten along with the
consequent money/time losses and frustration

4 Basic analysis of the code (i.e., with default configuration and
no deviations) can start in minutes after tool installation

5 Analysis reports are strictly keyed to the running code

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

A More Efficient and Trustable Process

1 Maximum automation greatly increases the significance of the
results

Everything you do by hand is subject to non-systematic errors

2 It also implies time and effort are spent where they are needed

Everything you do by hand has to be maintained

3 And translates into robustness in front of retargeting or
changes to the tool-chain

4 Fully-automatic reports favor the development of trust all
along the supply chain

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

Motivation
Did We Verify the Right Code?

Conclusion

Full Disclosure

This talk reflects the points of view and the philosophy of the
BUGSENG team that designed the ECLAIR software verification
platform

The whole methodology is being introduced in the automotive
software development and verification process of Bitron

no shortcuts,
no compromises,

no excuses:
software verification done right

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

✶✿

Motivation
Did We Verify the Right Code?

Conclusion

The End

roberto.bagnara@bugseng.com

bagnara@cs.unipr.it

Roberto Bagnara, BUGSENG srl & AFMLab, Parma, Italy Did We Veryfy the Right Code?

roberto.bagnara@bugseng.com
bagnara@cs.unipr.it

	Motivation
	(Critical) Software Is Buggy until Proved Correct
	High-Quality Verification Tools Are Needed

	Did We Verify the Right Code?
	The Painful Way by Example
	The Right Way by the same Example
	Further Advantages of Doing the Right Thing

	Conclusion

