
Developing high-quality software is tough. ECLAIR is designed to
help development, QA, and safety teams reach their quality goals

Coverage of IEC 61508
1 Introduction to IEC 61508:2010

IEC 61508:2010, “Functional safety of electrical/electronic/programmable electronic safety-related sys-
tems,” is a series of standards issued by IEC [5]. IEC 61508:2010 defines a generic approach for
all safety lifecycle activities regarding systems comprised of electrical and/or electronic and/or pro-
grammable electronic (E/E/PE) elements that are used to implement safety functions. IEC 61508:2010
is applicable to all industries. Several product and application sector international standards based on
the IEC 61508 series have been developed, but the general framework set out by IEC 61508:2010 is
applied as is whenever a more specific standard is not available.

IEC 61508:2010 considers all software safety lifecycle phases (e.g., initial concept, design, implemen-
tation, operation, maintenance decommissioning) of E/E/PE systems that are used to perform safety
functions. In particular, it provides a method for the development of the safety requirements specifica-
tion necessary to achieve the required functional safety for E/E/PE safety-related systems. This is based
on a risk-based approach based on the notion of Safety Integrity Level (SIL) for specifying the target
level of safety integrity for the safety functions to be implemented by E/E/PE safety-related systems.

There are four SILs: 1, 2, 3 and 4, with 1 being the lowest safety integrity level and 4 being the highest.
Each SIL correspond to a different range for the average probability of a dangerous failure; the ranges are
different depending on the mode of operation of the system, (low demand, high demand or continuous).
On the low demand mode of operation, SIL 4 corresponds to an average probability of a dangerous
failure on demand of the safety function in the range [10−5, 10−4]. On the high demand and continuous
modes of operation, SIL 4 corresponds to an average probability of a dangerous failure per hour of
operation of the safety function in the range [10−9, 10−8].

1.1 Role of ECLAIR in Ensuring Compliance with IEC 61508:2010

The ECLAIR Software Verification Platform can be used to comply with several of the techniques and
measures required by IEC 61508:2010 Part 3 “Software Requirements” [7]. In addition, the ECLAIR
FuSa Pack greatly simplifies obtaining all the confidence-building evidence that is required to make a
solid argument justifying the use of ECLAIR in safety-related projects.

Copyright © 2010–2025 BUGSENG srl. All rights reserved. ECLAIR Software Verification Platform is a registered
trademark of BUGSENG srl. All other trademarks and copyrights are the property of their respective owners. This document
is subject to change without notice. Last modification: Mon, 26 May 2025 17:01:54 +0200.

1

https://bugseng.com/sites/default/files/resources/ECLAIR_FuSa_Pack.pdf
https://bugseng.com/sites/default/files/resources/ECLAIR_FuSa_Pack.pdf

2 ECLAIR Coverage of IEC 61508:2010 Techniques and Measures

IEC 61508:2010 Part 3 applies to all software forming part of a safety-related system or used to develop
a safety-related system within the scope of IEC 61508:2010 [7]. For such software, it specifies require-
ments for safety lifecycle phases and activities that shall be applied during design and development.
These requirements include the application of measures and techniques for the avoidance of and the
control of faults and failures in the software. Techniques and measures are detailed in tables contained
in Annex A, which is normative. Annex B, which is informative, contains tables that expand upon some
of the entries of the tables of Annex A.

The degree of recommendation to use each technique and measure depends on the SIL, and is symboli-
cally encoded as follows:

HR indicates that the method is highly recommended for the identified SIL;

R indicates that the method is recommended for the identified SIL;

— indicates that the method has no recommendation for or against its usage for the identified SIL;

NR indicates that the method is positively not recommended for the identified SIL.

An appropriate combination of techniques and measures shall be selected according to the identified
SIL. Techniques and measures are listed in each table either as consecutive entries, numbered with 1,
2, 3, . . . in the leftmost table column, or as alternative entries, labeled with 1a, 1b, 1c, . . . in the same
column.

For consecutive entries, all listed as highly recommended and recommended techniques and measures,
in accordance with the SIL, apply. For alternative entries, an appropriate combination of topics and
methods shall be applied in accordance with the indicated SIL. If methods are listed with different
degrees of recommendation for a SIL, the methods with the higher recommendation should be preferred.
Guidance on the selection of an appropriate combination of techniques and measures is given in Annex
C of [7]. Techniques and measures are described in IEC 61508:2010 Part 7 [9].

The following tables have been obtained by extending the corresponding tables in IEC 61508 Part 3
with a column indicating where ECLAIR, suitably instantiated with the appropriate package, can be
used to ensure compliance or to facilitate the achievement of compliance. As ECLAIR provides di-
rect support for MISRA guidelines as well as guidelines from other coding standards, a reference for
a guideline should be taken as a reference to the corresponding ECLAIR service as described in the
ECLAIR User’s Manual. For example, “MISRA C:2025 Directive 3.1” corresponds to the ECLAIR ser-
vice MC4.D3.1, “MISRA C++:2023 Rule 9.4.1” corresponds to the ECLAIR service MP2.9.4.1 and
“BARR-C:2018 Rule 4.1.a” corresponds to the ECLAIR service NC3.4.1.a. For ECLAIR services
that do not correspond to published coding standards, the service name is given in teletype font: for
example, B.INDEPENDENCE is the name of an ECLAIR service that supports automatically enforcing
software architectural constraints [1]. A complete definition of all ECLAIR services is contained in the
ECLAIR User’s Manual and, where applicable, in the corresponding coding standard documentation
referenced therein.

2.1 MISRA C:2025

MISRA C:2025 [11] is the software development C subset developed by MISRA that is a de facto
standard for safety-, life-, security-, and mission-critical embedded applications in many industries,
including aerospace, railway, medical, telecommunications and others. MISRA C:2025, which allows
coding MISRA-compliant applications in subsets of C90, C99, C11 and C18, is supported, along with
all previous versions of MISRA C, by the ECLAIR package called “MC”.

2

https://www.bugseng.com/sites/default/files/resources/ECLAIR_MC.pdf

Table A.1 — Software safety requirements specification

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1a Semi-formal methods R R HR HR –
1b Formal methods — R R HR ✓a

2 Forward traceability between the system safety
requirements and the software safety
requirements

R R HR HR ✓b

3 Backward traceability between the safety
requirements and the perceived safety needs

R R HR HR ✓b

4 Computer-aided specification tools to support
appropriate techniques/measures above

R R HR HR ✓a,b

a The ECLAIR Independence Checker (service B.INDEPENDENCE) allows the formal specification
and systematic checking of software architectural constraints, e.g., to enforce constraints about lay-
ering and to prevent bypassing of software interfaces.

b ECLAIR service B.REQMAN allows ensuring that all code is forward and backward traceable to
documented requirements, including safety requirements. The integrated requirements management
tool makes ECLAIR a cost-effective, complete solution for requirements-based development.

2.2 MISRA C++:2023

MISRA C++:2023 [10] is the software development C++ subset developed by MISRA, which is a de
facto standard for safety-, life-, and mission-critical embedded applications in many industries including
aerospace, railway, medical, telecommunications and others. MISRA C++:2023 completely supersedes
MISRA C++:2008 [12], the previous edition of the coding standard, which is still used by many legacy
projects. MISRA C++:2023 and MISRA C++:2008 are supported by the ECLAIR package called “MP”.

2.3 BARR-C:2018

The Barr Group’s Embedded C Coding Standard, BARR-C:2018 [3], is, for coding standards used
by the embedded system industry, second only in popularity to MISRA C. BARR-C:2018 guidelines
include 64 guidelines dealing with language subsetting and project management as well as 79 guidelines
concerning programming style. For projects in which a MISRA compliance requirement is not (yet)
present, the adoption of BARR-C:2018 is a major improvement with respect to the situation where
no coding standards and no static analysis is used. The adoption of the stylistic subset of BARR-
C:2018 (79 out of 143 rules) can be part of complying with the MISRA requirement that a consistent
programming style is adopted and systematically used as part of the software development process.
Moreover, complying with BARR-C:2018, besides avoiding many dangerous bugs, entails compliance
with a non-negligible subset of MISRA C:2012 [2]. ECLAIR support for BARR-C:2018 has no equals
on the market: it is included in all ECLAIR packages, including the affordable package “B”.

Table A.2 — Software design and development — software architecture design

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Fault detection — R HR HR ✓a

2 Error detecting codes R R R HR –
3a Failure assertion programming R R R HR –
3b Diverse monitor techniques (with

independence between the monitor and the
monitored function in the same computer)

— R R — ✓b

continued

3

https://www.bugseng.com/sites/default/files/resources/ECLAIR_MP.pdf
https://www.bugseng.com/sites/default/files/resources/ECLAIR_B.pdf

Table A.2 — Software design and development — software architecture design

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
3c Diverse monitor techniques (with separation

between the monitor computer and the
monitored computer)

— R R HR ✓b

3d Diverse redundancy, implementing the same
software safety requirements specification

— — — R –

3e Diverse redundancy, implementing the same
software safety requirements specification

— — R HR –

3f Backward recovery R R — NR –
3g Stateless software design (or limited state

design)
— — R HR –

4a Re-try fault recovery mechanisms R R — — –
4b Graceful degradation R R HR HR –
5 Artificial intelligence - fault correction — NR NR NR –
6 Dynamic reconfiguration — NR NR NR –
7 Modular approach HR HR HR HR ✓c

8 Use of trusted/verified software elements (if
available)

R HR HR HR ✓d

9 Forward traceability between the software
safety requirements specification and software
architectures

R R HR HR ✓e

10 Backward traceability between the software
safety requirements specification and software
architecture

R R HR HR –

11a Structured diagrammatic methods HR HR HR HR –
11b Semi-formal methods R R HR HR –
11c Formal design and refinement methods — R R HR –
11d Automatic software generation R R R R –
12 Computer-aided specification and design tools R R HR HR ✓b

13a Cyclic behaviour, with guaranteed maximum
cycle time

R HR HR HR –

13b Time-triggered architecture R HR HR HR –
13c Event-driven, with guaranteed maximum

response time
R HR HR — –

14 Static resource allocation — R HR HR ✓f

15 Static synchronisation of access to shared
resources

— — R HR ✓g

4

a The MISRA C/C++ guidelines require systematic checking of error information returned by func-
tions. Guidance is also provided on how to perform some of these checks. E.g., for MISRA C:2025,
Directive 4.7, Rules 22.8, 22.9, and 22.10; for MISRA C++:2023, Rule 22.4.1.

b The ECLAIR Independence Checker (service B.INDEPENDENCE) allows the formal specification
and systematic checking of software architectural constraints, e.g., to enforce constraints about layer-
ing and to prevent bypassing of software interfaces. B.INDEPENDENCE is instrumental in proving
independence among different software components.

c See Table B.9.
d The ECLAIR Scout product (service B.SCOUT) allows for the precise identification of the component

to be qualified. This is particularly challenging in the case of C++, where libraries make extensive
use of templates and compile-time evaluation, so that much code has not a direct manifestation in the
object code.

e ECLAIR service B.REQMAN allows ensuring that all code is forward and backward traceable to
documented requirements, including safety requirements. The integrated requirements management
tool makes ECLAIR a cost-effective, complete solution for requirements-based development.

f The MISRA C/C++ guidelines include prescriptions limiting the use of dynamic memory allocation.
E.g., for MISRA C:2025, Directive 4.12 and Rules 18.7, 21.3, 22.1 and 22.2; for MISRA C++:2023,
RUle 21.6.1.

g ECLAIR service for MISRA C:2025 Directive 4.13 and MISRA C++:2023 Rule 4.6.1 allow specify-
ing constraints on the sequence of actions operating on resources, including shared resources.

2.4 HIS and Other Source Code Metrics

Source code metrics are recognized by many software process standards (and from MISRA) as providing
an objective foundation to efficient project and quality management. One well known set of metrics has
been defined by HIS (Herstellerinitiative Software, an interest group set up by Audi, BMW, Daimler,
Porsche and Volkswagen).

The HIS source code metrics [4], while well established, include some metrics that are obsolete and
miss others that are required or recommended by software process standards, such as those that allow
estimating function coupling. For this reason, ECLAIR supplements HIS source code metrics with
numerous other metrics that allow software quality to be assessed in terms of complexity, testability,
readability, maintainability and so forth. Keeping track of these metrics also provides an effective and
objective method to assess the quality of the software development process. The full set of metrics is
available in all ECLAIR packages.

5

Table A.3 — Software design and development - support tools and programming language

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Suitable programming language HR HR HR HR ✓a

2 Strongly typed programming language HR HR HR HR ✓b

3 Language subset — — HR HR ✓a

4a Certified tools and certified translators R HR HR HR ✓c

4b Tools and translators: increased confidence
from use

HR HR HR HR ✓d

a MISRA C and MISRA C++ are subsets of C and C++, respectively that are generally recognized
as suitable for all sorts of safety-related development. BARR-C:2018 defines a subset of C (signif-
icantly larger than the one defined by MISRA C) that is also widely recognized as suitable for less
critical development.

b MISRA C/C++ enforce strong typing on the respective languages. E.g., for MISRA C:2025,
Rules 10.1–10.8, 11.1–11.9, and 14.4; for MISRA C++:2023, Rules 7.0.1–7.0.6, 7.11.1 and 8.2.1–
8.2.7.

c ECLAIR has been certified by TÜV SÜD according to IEC 61508 up to SIL 4, ISO 26262 up to
ASIL D, EN 50128 up to SIL 4, IEC 62304 up to Class C, ISO 25119 up to SRL 3: see the TÜV
SÜD Report for details.

d The first commercial ECLAIR license for use in safety-critical development was granted in June
2013. Over the years, ECLAIR has been used for safety- and security-related development in the
following industry sectors: automotive, aviation, energy, household appliances, industrial, medical
devices, railways, space.

6

Table A.4 — Software design and development - detailed design

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1a Structured methods HR HR HR HR –
1b Semi-formal methods R HR HR HR –
1c Formal design and refinement methods — R R HR –
2 Computer-aided design tools R R HR HR ✓a,g

3 Defensive programming — R HR HR ✓b

4 Modular approach HR HR HR HR ✓c

5 Design and coding standards R HR HR HR ✓d

6 Structured programming HR HR HR HR ✓e

7 Use of trusted/verified software elements (if
available)

R HR HR HR ✓f

8 Forward traceability between the software
safety requirements specification and software
design

R R HR HR ✓g

a The ECLAIR Independence Checker (service B.INDEPENDENCE) allows the formal specification
and systematic checking of software architectural constraints, e.g., to enforce constraints about lay-
ering and to prevent bypassing of software interfaces. B.INDEPENDENCE is instrumental in prov-
ing independence among different software components.

b The MISRA C/C++ guidelines promote the use of several defensive programming techniques. E.g.,
for MISRA C:2025, Directives 4.1, 4.7, 4.11 and 4.14, Rules 14.2, 15.7, 16.4, and 17.7; for
MISRA C++:2023, Rules 0.1.2, 9.4.1, 9.4.2, 9.5.1, 9.6.5 and 18.3.1.

c See Table B.9.
d ECLAIR can be used to verify the compliance of source code to coding standards, such as the

MISRA coding standards and BARR-C:2018. ECLAIR can also be used to verify that the value of
software metrics are inside prescribed ranges.

e The MISRA C/C++ guidelines include limits on the use of non-structured control-flow constructs.
E.g., for MISRA C:2025, Rules 14.3, 15.1–15.4, and 21.4. for MISRA C++:2023, Rules 0.0.2,
9.6.1–9.6.3 and 21.10.2. A threshold on metric HIS.GOTO allows limiting the use of goto.

f The ECLAIR Scout product (service B.SCOUT) allows for the precise identification of the com-
ponent to be qualified. This is particularly challenging in the case of C++, where libraries make
extensive use of templates and compile-time evaluation, so that much code has not a direct manifes-
tation in the object code.

g ECLAIR service B.REQMAN allows ensuring that all code is forward and backward traceable to
documented requirements, including safety requirements. The integrated requirements management
tool makes ECLAIR a cost-effective, complete solution for requirements-based development.

7

Table A.5 — Software design and development software module testing and integration

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Probabilistic testing — R R R –
2 Dynamic analysis and testing R HR HR HR –
3 Data recording and analysis HR HR HR HR –
4 Functional and black box testing HR HR HR HR –
5 Performance testing R R HR HR –
6 Model based testing R R HR HR –
7 Interface testing R R HR HR –
8 Test management and automation tools R HR HR HR –
9 Forward traceability between the software

safety specification and the module and
integration test specification

R R HR HR ✓a

10 Formal verification — — R R ✓b

a ECLAIR service B.REQMAN allows ensuring that all code is forward and backward traceable to
documented requirements, including safety requirements. B.REQMAN also allows tracing code to
the tests and back. The integrated requirements management tool makes ECLAIR a cost-effective,
complete solution for requirements-based development and testing.

b Static analysis with ECLAIR, under the condition that no language extensions were used, consti-
tutes a formal verification of certain program properties. For example, if ECLAIR does not issue
any violation report or |caution report| concerning MISRA C:2025 Rule 9.1 or MISRA C++:2023
Rule 11.6.2 and no language extensions have been used (inline assembly in particular), this is a
formal proof that uninitialized memory reads cannot take place.

8

Table A.9 — Software verification

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Formal proof — R R HR ✓a

2 Animation of specification and design R R R R –
3 Static analysis R HR HR HR ✓b

4 Dynamic analysis and testing R HR HR HR ✓c

5 Forward traceability between the software
design specification and the software
verification (including data verification) plan

R R HR HR ✓d

6 Backward traceability between the software
verification (including data verification) plan
and the software design specification

R R HR HR ✓d

7 Offline numerical analysis R R HR HR –
a Static analysis with ECLAIR, under the condition that no language extensions were used, consti-

tutes a formal verification of certain program properties. For example, if ECLAIR does not issue
any violation report or |caution report| concerning MISRA C:2025 Rule 9.1 and no language ex-
tensions have been used (inline assembly in particular), this is a formal proof that uninitialized
memory reads cannot take place.

b ECLAIR employs state-of-the-art static analysis techniques.
c Some HIS metrics and, above all, the B.ACPATH metric provide an estimation of the number of

tests required in order to cover each acyclic path in a function or method body [1]. Enforcing
thresholds on such metrics ensures that unit testing is feasible.

d ECLAIR service B.REQMAN allows ensuring that all code is forward and backward traceable to
documented requirements, including safety requirements. B.REQMAN also allows tracing code to
the tests and back. The integrated requirements management tool makes ECLAIR a cost-effective,
complete solution for requirements-based development and testing.

9

Table B.1 — Design and coding standards

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Use of coding standard to reduce likelihood of

errors
HR HR HR HR ✓a

2 No dynamic objects R HR HR HR ✓b

3a No dynamic variables — R HR HR ✓b

3b Online checking of the installation of dynamic
variables

— R HR HR –

4 Limited use of interrupts R R HR HR –
5 Limited use of pointers — R HR HR ✓c

6 Limited use of recursion — R HR HR ✓d

7 No unstructured control flow in programs in
higher level languages

R HR HR HR ✓e

8 No automatic type conversion R HR HR HR ✓f

a ECLAIR can be used to verify the compliance of source code to coding standards, such as the
MISRA coding standards and BARR-C:2018. In turn, compliance with such standards ensures that
the semantics of the source code is well defined and that certain classes of run-time errors cannot
occur. ECLAIR can also be used to verify that the value of software metrics are inside prescribed
ranges.

b The MISRA C/C++ guidelines include prescriptions limiting the use of dynamic memory allocation.
E.g., for MISRA C:2025, Directive 4.12 and Rules 18.7, 21.3, 22.1 and 22.2; for MISRA C++:2023,
Rule 21.6.1.

c The MISRA C/C++ guidelines include rules restricting the use of pointers. E.g., for MISRA C:2025,
Rules 8.13, 11.1–11.8, and 18.1–18.5; for MISRA C++:2023, Rules 8.2.3, 8.2.4, 8.2.6–8.2.8, 8.7.1,
8.7.2, 8.9.1 and 10.1.1. The specific ECLAIR services B.PTRDECL and B.PTRUSE allow fine
control of pointers’ use.

d MISRA C:2025 Rule 17.2 and MISRA C++:2023 Rule 8.2.10 forbid recursion. A threshold on
metric HIS.ap_cg_cycle also allows ruling out recursion.

e The MISRA C/C++ guidelines include limits on the use of non-structured control-flow constructs.
E.g., for MISRA C:2025, Rules 14.3, 15.1–15.4, and 21.4; for MISRA C++:2023, Rules 0.0.2,
9.6.1–9.6.3 and 21.10.2. A threshold on metric HIS.GOTO allows limiting the use of goto.

f The MISRA C/C++ guidelines include several rules restricting the use of implicit conversions.
E.g., for MISRA C:2025, Rules 10.1, 10.3, 10.4, 10.6, 10.7, 11.1, 11.2, 11.4, 11.5, and 11.9; for
MISRA C++:2023, Rules 7.0.1, 7.0.2, 7.0.4–7.0.6, 7.11.1, 8.2.4, 8.2.6, 8.2.7 and 8.3.1.

10

Table B.8 — Static Analysis

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Boundary value analysis R R HR HR –
2 Checklists R R R R –
3 Control flow analysis R HR HR HR ✓a

4 Data flow analysis R HR HR HR ✓b

5 Error guessing R R R R –
6a Formal inspections, including specific criteria R R HR HR ✓c

6b Walk-through (software) R R R R ✓c

7 Symbolic execution — — R R –
8 Design review HR HR HR HR –
9 Static analysis of run time error behaviour R R R HR ✓d

10 Worst-case execution time analysis R R R R –
a ECLAIR builds accurate control flow graphs to reason on (feasible and unfeasible) execution paths.
b ECLAIR performs a number of data flow analyses to reason about, e.g., pointers, values and dead

stores.
c Compliance to the MISRA C/C++ and the BARR-C:2018 guidelines greatly increases code read-

ability and understandability, thereby facilitating verification activities by walk-through, pair-
programming and inspection.

d ECLAIR static analysis ensures that the semantics of the source code is well defined and that certain
classes of run-time errors cannot occur.

11

Table B.9 — Modular Approach

Technique/Measure SIL 1 SIL 2 SIL 3 SIL 4 ECLAIR
1 Software module size limit HR HR HR HR ✓a

2 Software complexity control R R HR HR ✓b

3 Information hiding/encapsulation R HR HR HR ✓c

4 Parameter number limit / fixed number of
subprogram parameters

R R R R ✓d

5 One entry/one exit point in subroutines and
functions

HR HR HR HR ✓e

6 Fully defined interface HR HR HR HR ✓f

a ECLAIR supports metrics that are strongly correlated with the size of functions, methods and
translation units (e.g., the number of statements and the number of logical lines of code).

b ECLAIR supports metrics that are strongly correlated with the complexity size of functions and
methods (e.g., cyclomatic complexity and the number of acyclic paths through the body).

c The MISRA C/C++ guidelines promote the use of information hiding and encapsulation. E.g., for
MISRA C:2025, Directives 4.3 and 4.8 and Rules 8.7 and 8.9. In addition, the ECLAIR Indepen-
dence Checker can be used to enforce strict encapsulation constraints.

d HIS metrics counting function parameters and MISRA C/C++ guidelines on reduction of variables’
scope allow limiting the number of (explicit and implicit) parameters.

e MISRA C:2025 Rule 15.5 and MISRA C++:2008 Rule 6-6-5 require subprograms to have a single
entry and a single exit only. An upper threshold on metric HIS.RETURN allows for a more flexible
approach.

f The MISRA C/C++ guidelines promote the full definition of interfaces. E.g., for MISRA C:2025,
Rules 8.2 and 8.3 prescribe the use of prototype form and the use of consistent names for function
declarations; Rule 17.3 forbids implicit declarations; Directive 4.14 requires data verification; for
MISRA C++:2023, Rules 6.2.2, 6.9.2 and 13.3.3 prescribe the use of consistent name and types for
entity declarations. BARR-C:2018 Rule 2.2.h recommends commenting modules and functions
with explicit specification of pre-conditions and post-conditions with Doxygen; such comment
blocks are automatically checked by ECLAIR for consistency.

12

2.5 ECLAIR Support for Independence in IEC 61508

In IEC 61508, the strongest incentive to ensure independence can be found in Part 1 [6, 7.6.2.10]:

7.6.2.10 For an E/E/PE safety-related system that implements safety functions of different
safety integrity levels, unless it can be shown there is sufficient independence of implemen-
tation between these particular safety functions, those parts of the safety-related hardware
and software where there is insufficient independence of implementation shall be treated
as belonging to the safety function with the highest safety integrity level. Therefore, the
requirements applicable to the highest relevant safety integrity level shall apply to all those
parts.

For software, the requirements on independence and non-interference between safety functions and non-
safety functions are given in IEC 1508 Part 3 [7, 7.4.2.8, 7.4.2.9]:

7.4.2.8 Where the software is to implement both safety and non-safety functions, then all of
the software shall be treated as safety-related, unless adequate design measures ensure that
the failures of non-safety functions cannot adversely affect safety functions.

7.4.2.9 Where the software is to implement safety functions of different safety integrity lev-
els, then all of the software shall be treated as belonging to the highest safety integrity level,
unless adequate independence between the safety functions of the different safety integrity
levels can be shown in the design. It shall be demonstrated either (1) that independence is
achieved by both in the spatial and temporal domains, or (2) that any violation of indepen-
dence is controlled. The justification for independence shall be documented.

The ECLAIR Independence Checker (service B.INDEPENDENCE) allows the formal specification and
systematic checking of software architectural constraints, e.g., to enforce constraints about layering and
to prevent bypassing of software interfaces. B.INDEPENDENCE is instrumental in proving indepen-
dence among different software components.

3 ECLAIR Qualification in Compliance with IEC 61508

The ECLAIR functionality described above is qualifiable in compliance with
IEC 61508: ECLAIR is a class T2 off-line support tool [8, Clause 3.2.11] and
meets all the requirements set forth in IEC 61508 Part 3 for such tools [7, Clause
7.4.4]. TÜV SÜD audited BUGSENG software development and quality assur-
ance processes for ECLAIR, as well as the internal validation activities performed
by BUGSENG on each ECLAIR release. At the end of its assessment, TÜV
SÜD awarded BUGSENG the “Software Tool for Safety Related Development”
Certificate no. Z10 116151 0001 Rev. 01, attesting that the ECLAIR Software
Verification Platform is suitable to be used in safety-related development projects
according to IEC 61508:2010 for any SIL.

13

https://www.tuvsud.com/en/services/product-certification/ps-cert?q=Z10+116151+0001+Rev.+01
https://bugseng.com/sites/default/files/resources/ECLAIR_TUV-SUD_Certificate.pdf

4 The Bigger Picture

ECLAIR is very flexible and highly configurable: it supports all kinds of software development work-
flows and environments.

ECLAIR is fit for use in mission- and safety-critical software projects: it has been designed from the
outset to exclude configuration errors that would undermine the significance of the obtained results.

ECLAIR is developed in a rigorous way and carefully checked with extensive internal test suites (tens
of thousands of test cases) and industry-standard validation suites.

ECLAIR is based on solid scientific research results and on the best practices of software development.

ECLAIR’s unique features and BUGSENG’s strong commitment to the customer, allow for a smooth
transition to ECLAIR from any other tool.

BUGSENG’s quality system has been certified by TÜV Italia (TÜV SÜD Group) to comply with the
requirements of UNI EN ISO 9001:2015 for the “Design, development, maintenance and support of
tools for software verification and validation” (IAF 33).

BUGSENG is an Arm’s Functional Safety Partner, and is thus recognized as a partner who can reliably
support their customers with industry leading functional safety products and services.

For More Information

BUGSENG srl
Via Marco dell’Arpa 8/B
I-43121 Parma, Italy
Email: info@bugseng.com
Web: http://bugseng.com
Tel.: +39 0521 461640

no shortcuts,
no compromises,

no excuses:
software verification done right

14

https://www.bugseng.com/sites/default/files/resources/BUGSENG_ISO9001_Certificate.pdf
https://developer.arm.com/solutions/functional-safety-partnership-program/bugseng
mailto:info@bugseng.com
http://bugseng.com

References

[1] R. Bagnara, A. Bagnara, and P. M. Hill. Formal verification of software architectural constraints. In
DESIGN&ELEKTRONIK, editor, embedded world Conference 2023 — Proceedings, pages 271–
279, Nuremberg, Germany, 2023. WEKA FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar,
Germany.

[2] R. Bagnara, M. Barr, and P. M. Hill. BARR-C:2018 and MISRA C:2012 (with Amendment 2):
Synergy between the two most widely used C coding standards. In DESIGN&ELEKTRONIK,
editor, embedded world Conference 2021 DIGITAL — Proceedings, pages 378–391, Nuremberg,
Germany, 2021. WEKA FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar, Germany.

[3] M. Barr. BARR-C:2018 — Embedded C Coding Standard. Barr Group, www.barrgroup.com, 2018.

[4] H. Kuder et al. HIS source code metrics. Technical Report HIS-SC-Metriken.1.3.1-e, Herstel-
lerinitiative Software, April 2008. Version 1.3.1.

[5] IEC. IEC 61508-1:2010: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems. IEC, Geneva, Switzerland, April 2010.

[6] IEC. IEC 61508-1:2010: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems — Part 1: General Requirements. IEC, Geneva, Switzerland, April 2010.

[7] IEC. IEC 61508-3:2010: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems — Part 3: Software Requirements. IEC, Geneva, Switzerland, April 2010.

[8] IEC. IEC 61508-4:2010: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems — Part 4: Definitions and Abbreviations. IEC, Geneva, Switzerland, April
2010.

[9] IEC. IEC 61508-7:2010: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems — Part 7: Overview of Techniques and Measures. IEC, Geneva, Switzer-
land, April 2010.

[10] MISRA. MISRA C++:2023 — Guidelines for the use of C++17 in critical systems. The MISRA
Consortium Limited, Norwich, Norfolk, NR3 1RU, UK, October 2023.

[11] MISRA. MISRA C:2025 — Guidelines for the use of the C language in critical systems. The
MISRA Consortium Limited, Norwich, Norfolk, NR3 1RU, UK, March 2025.

[12] Motor Industry Software Reliability Association. MISRA C++:2008 — Guidelines for the use of
the C++ language in critical systems. MIRA Limited, Nuneaton, Warwickshire CV10 0TU, UK,
June 2008.

15

www.barrgroup.com

	Introduction to IEC 61508:2010
	Role of ECLAIR in Ensuring Compliance with IEC 61508:2010

	ECLAIR Coverage of IEC 61508:2010 Techniques and Measures
	MISRA C:2025
	MISRA C++:2023
	BARR-C:2018
	HIS and Other Source Code Metrics
	ECLAIR Support for Independence in IEC 61508

	ECLAIR Qualification in Compliance with IEC 61508
	The Bigger Picture
	For More Information

