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Abstract—C-rusted is an innovative technology whereby C pro-
grams can be (partially) annotated so as to express: ownership,
exclusivity and shareability of language, system and user-defined
resources; properties of objects and the way they evolve during
program execution; optional types, nominal types and subtypes
compatible with any C data type. The annotated C programs, be-
ing fully compatible with all versions of ISO C, can be translated
with unmodified versions of any C compiler. The crucial point
is that such annotations express program properties that can
be formally verified through static analysis: if the static analyzer
flags no error, then the annotations are provably coherent among
themselves and with the annotated C code, in which case the
analyzed program portions are provably exempt from a large
class of logic, security, and run-time errors. The annotation
system has been designed not to be intrusive: in most of the
situations, also the lack of annotations has a precise meaning
that is used by the static analyzer to formally verify program
properties. C-rusted is a pragmatic and cost-effective solution
to up the game of C programming to unprecedented integrity
guarantees without giving up anything that the C ecosystem
offers today. That is, keep using C, exactly as before, using the
same compilers and the same tools, the same personnel. . . but
incrementally adding to the program the information required
to formally verify correctness, using a system of annotations that
is not based on complex formalisms (such as mathematical logic)
and can be taught to programmers in a week.

I. INTRODUCTION

A. The Spirit of C

The C programming language was designed to be simple,
minimal and fast: no whistles or frills, just pragmatic neces-
sities for the development of the UNIX operating system for
a PDP-11 computer. The spirit of C is clearly spelled out in
the C charter [1]:

(a) Trust the programmer.
(b) Don’t prevent the programmer from doing what needs to

be done.
(c) Keep the language small and simple.
(d) Provide only one way to do an operation.
(e) Make it fast, even if it is not guaranteed to be portable.
(f) Make support for safety and security demonstrable.

From the moment of its inception in the 1970s, C gradually
gained popularity until it has become a crucial foundation of
all current applications of information technology:

• The way C is defined simplifies the task of producing
optimizing compilers: this is the reason why C compilers
exist for almost any processor.

• Compiled code is very efficient and without hidden
costs: this makes C suitable to applications where high
performance is crucial.

• The syntax allows writing compact code thanks to the
many built-in operators and the limited verbosity of its
constructs.

• C is defined by an ISO standard [2].
• C, possibly with extensions, allows easy access to the

hardware.
• C provides the basis upon which the implementations of

many other programming languages and their run-time
environments are built.

• C has a long history of use, including in critical systems.
• C is widely supported by all sorts of tools.
As a direct consequence, there are strong economic reasons

behind the use of C and it has no equals as long as the
following criteria are considered:

• number of developers in low-level, safety-related and
security-related industry sectors;

• number of qualified tools for compilation, analysis, test-
ing, coverage, documentation, code generation and any
other code manipulation;

• number and range of supported architectures.

B. The Other Side of the Coin
The efficiency and simplicity of C obviously come at a

cost. The fact that C code can efficiently be compiled to
machine code for almost any architecture is due to the fact that,
whenever this is possible and convenient, high-level constructs
are mapped directly to a few machine instructions:

• given that instruction sets differ from one architecture to
the other, the behavior of C programs is not fully defined;

• the fact that there is nothing happening under the hood
also means that no run-time checks are performed to
ensure safety and/or security.

Even though the C programming language is (for the sake of
efficiency only) statically typed, types only define the internal
representation of data and little more: types in C do not offer
programmers a way of expressing non-trivial data properties
that are bound to the program logic. For instance:
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• memory references are raw pointers carrying no informa-
tion about the associated memory block or its intended
use;

• an open file has the same type as a closed file;
• a resource or a transaction has the same type indepen-

dently from its state;
• an exclusive reference and a shared reference to a re-

source are indistinguishable;
• an integer with special values that represent error condi-

tions is indistinguishable from an ordinary integer.
As an example, consider the program in Figure 1 which the

GNU C compiler compiles without any warning even at a very
high warning level: the task of identifying all the problems is
left as an exercise for the reader.

1 #include <fcntl.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4

5 extern void process(char *string);

6

7 int foo(const char *fname, size_t bufsize) {

8 int fd = open(fname, O_RDONLY);

9 char *buf = malloc(bufsize);

10 ++fd;

11 ssize_t bytes = read(fd, buf, bufsize);

12 buf[bytes] = '\0';

13 process(buf);

14 return 0;

15 }

Fig. 1. A C program compiling with no warnings with:
gcc -c -std=c18 -Wall -Wextra -Wpedantic

Nowadays, increasing attention is paid to safety and security
of software systems and the C programming language is often
criticized for the ease with which programming mistakes are
committed, especially those related to memory management
that can lead to safety and security vulnerabilities. Memory
safety is currently a hot topic to the point that the White House
Office of the National Cyber Director released a report to
promote a shift toward memory-safe programming languages
[3].

Throwing away the C ecosystem (which is worth zillions)
is completely impractical. The main issues are as follows:

• Legacy: there is too much legacy code written in C;
the costs and risks involved in rewriting existing code
bases (a good part of which has a more-than-honorable
operational history and may be in perfectly good shape)
are enormous.

• Personnel: retraining millions of developers to Rust
would take time and lots of resources.

• Portability: for many MCUs used in embedded systems,
there are currently no alternatives to C.

• Tools: while all sorts of tools are available for C, the
same thing cannot be said for other languages.

C. From C to C-rusted
In this paper, we show how concepts that have been proven

to work well in other languages, such as “the ownership
model” and “borrowing” of Rust, can be ported to C, in order
to define C-rusted: a formally verifiable flavor of C for the
development of safe and secure systems. The key points of
our approach are the following:

1) C-rusted is based on annotations with which the program-
mer can express:

a) ownership, exclusivity and shareability of language,
system and user-defined resources;

b) properties of resources and the way they evolve during
program execution;

c) optional types, nominal types and subtypes compatible
with any standard C data type.

2) As far as the compiler is concerned, all C-rusted annota-
tions are macros expanding to nothing (with the exception
of global annotations, which expand to something that
obeys ISO C syntax and is ignored by the compiler). The
(partially) annotated C programs, being fully compatible
with all versions of ISO C, can be translated with
unmodified versions of any compilation toolchain capable
of processing ISO C code.

3) Differently from the compiler, a static analyzer —which
we will call C-rusted Analyzer from now on— does
interpret the annotations and validate the program: if the
static analysis flags no error, then the annotations are
provably coherent among themselves and with respect to
annotated C code, in which case the annotated program
is provably exempt from a large class of logic, security,
and run-time errors.

4) It is important to note that it is not only the presence of
annotations that expresses information: even the absence
of annotations has a definite meaning that is checked
by the static analyzer so that any possible oversight or
inconsistency is flagged. This characteristic is used, for
example, to “reverse” some dangerous defaults of the C
programming language: whereas in C an object of type
pointer can be a null pointer, in C-rusted a pointer can
be null only if it is annotated as such.

As a result:
• Legacy code can be reused as-is: for code that is safety-

critical, annotations can be added in order to obtain proofs
of safety, but no rewriting is required, thereby avoiding
all risks that this would entail.

• There is no need to retrain the developers to learn other
languages, apart from those that, working on safety-
critical components, would have to get familiar with the
annotations.

• Existing C compilers can be used without any change,
thereby ensuring maximum portability.

• All sorts of tools, in addition to compilers, can also be
used without any change.

Before going into detail about C-rusted, a brief demon-
stration of its capabilities is given in Figure 2, where the



1 #include /* .... */

2 #include <crusted.h> // Include C-rusted declarations, e.g., for e_hown() annotation.

3

4 // The actual argument shall be a valid reference (not null)

5 // to a C string in the heap of which process() will take ownership:

6 // the caller shall own the resource, otherwise it would be unable to pass it on.

7 extern void process(char * e_hown() string);

8

9 // The first actual argument shall be a valid shared reference (not null) to a C string.

10 // The second actual argument shall be a constant or an initialized unsigned variable.

11 int foo(const char *fname, size_t bufsize) {

12 int fd; // (The value of) `fd' is indeterminate.

13 fd = open(fname, O_RDONLY);

14 // `fd' is either the erroneous value -1 or an owning reference to a file.

15 if (fd == -1)

16 return 1;

17 // `fd' is definitely an owning reference to a file.

18

19 char *buf = malloc(bufsize);

20 // `buf' is either NULL or an owning reference to an uninitialized heap-allocated array.

21 if (buf == NULL || bufsize == 0U) {

22 (void) close(fd);

23 // Ownership of the file moved from the actual argument

24 // to the formal parameter of close(), which will close it:

25 // no open file description leak; `fd' cannot be used anymore but it can be overwritten.

26 return 1;

27 }

28 // `buf' is definitely an owning reference to a heap-allocated array.

29

30 ssize_t bytes = read(fd, buf, bufsize - 1U); // No ownership move, resources are borrowed.

31 // `bytes' is either the erroneous value -1 or the number of bytes read into `buf'.

32 if (bytes == -1) {

33 free(buf);

34 // Ownership of the heap-allocated memory moved from the actual argument

35 // to the formal parameter of free(), which will deallocate it:

36 // no memory leak, `buf' cannot be used anymore but it can be overwritten.

37 (void) close(fd); // Ownership moved from actual argument to formal parameter, as in line 22.

38 return 1;

39 }

40 // `bytes' is definitely the number of bytes read into `buf'.

41 buf[bytes] = '\0';

42 // `buf' is definitely an owning reference to a C string in the heap.

43

44 process(buf);

45 // Ownership of the heap-allocated string moved from the actual argument

46 // to the formal parameter of process(), which will deallocate it:

47 // no memory leak, `buf' cannot be used anymore but it can be overwritten.

48

49 (void) close(fd); // Ownership moved from actual argument to formal parameter, as in line 22.

50 return 0;

51 }

Fig. 2. A C-rusted program for which the C-rusted Analyzer gives no warnings
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logical argument followed by the C-rusted Analyzer to validate
the program and consider it safe1 is put into words through
comments in the code:2 readers familiar with both C and
Rust will find several similarities, while the others can find
an explanation of all the concepts in Sections II and III, but
please note that:

• While fd is declared having type int, the value of fd

has properties that change throughout the function body;
similarly for buf and bytes and bufsize. In other
words, the C-rusted type system is able to track how
properties of resources change depending on the program
point.

• A large part of the guarantees are obtained without
any user annotation at all, thanks to the fact that the
C standard library and the POSIX library have been
annotated once and for all (and the same can be done
with any frequently used library).

• Annotations are not heavy and do not clutter the code:
they are mostly limited to function declarations and type
qualifiers such as e_hown() can also be embedded in
typedefs; a proper choice of typedef names also helps
readability and understandability.

II. PROBLEMS AND SOLUTIONS

In the following sections some of the most common C mem-
ory and resource-management issues will be briefly discussed:
for each of them, the solution implemented by C-rusted will
be illustrated with the help of simple yet realistic examples.

A. Null Pointer Dereferencing

The reasons behind the existence of null pointers in C are
the following:

• allowing the default initialization of pointer-typed vari-
ables to a known value;

• allowing the encoding, through a special value, of the fact
that a certain condition has occurred (which is often, but
not always, an error condition);

• allowing the definition of recursive data structures by
means of pointers that can eventually point to nothing.

In C, dereferencing a null pointer is undefined behavior.
This means that the C standard places no limit to what a
program dereferencing a null pointer can do. A segmentation
fault raised by the hardware is the best outcome that one
can expect from executing a program that dereferences a null
pointer, but there is no guarantee that this is what will happen:
the program could silently corrupt the memory, continue
running, and exhibit erratic behavior of any kind.

The fact that today, as has been the case since the language
went into existence, C programs are exposed to the problem
of null-pointer dereferencing is mainly due to the following
factors:

1We call a C-rusted program safe if the C-rusted Analyzer does not issue
warnings for it.

2In this document, “shall” and “shall not” need to be interpreted as
requirements: a program that does not meet all the requirements is considered
to be unsafe as it will generate warnings when fed to the static analyzer.

1) the C programming language is not meant to get in the
way of the programmer: forcing the implementation to
perform null-pointer checks goes against the spirit of C:
trust the programmer to know whether these checks are
required and compatible with the efficiency requirements
of the program at hand;

2) for the sake of efficiency, the tendency of programmers
is to only code the null-pointer checks that they deem
strictly necessary, but they frequently get it wrong and
things get worse as the program grows.3

In C-rusted a pointer can be null only if it is annotated
as such through the e_opt(NULL) annotation: such pointer
is said to be an optional pointer. The concept of optionality,
however, covers more than just pointers: an optional type is
a type annotated with e_opt(), so as to identify a subset
of its values that are “reserved” for encoding the occurrence
of some special condition. We refer to these special values
as optional values, so that they can be distinguished from
other non-optional values, the ordinary values. For pointers,
the value NULL is a clear example of optional value.

Identifying optional types through annotations allows the
C-rusted Analyzer to support the programmer in the proper
handling and propagation of the corresponding optional values
(passed as arguments to the annotation) through the following
constraints, which are enforced at compile time:

• a dereferencing operation of an optional pointer shall be
permitted only if it is guarded by an explicit test (typically
in the guard of an if statement or an iteration statement)
which filters the optional null value out;

• the assignment of an expression having an optional type
shall be permitted only if the destination has an optional
type as well, unless the assignment is guarded as above;
this applies also to passing arguments to functions, re-
turning values from functions, and initializations.4

As an example, in Figure 3 the find() function is defined
as returning a pointer to the first occurrence of the element
elem in vec, or a null pointer in case the element is not
found. For that program, the C-rusted Analyzer will report
two warnings to highlight the wrong management of optional
types: the first one at line 8, where the function returns NULL

despite the return type not being an optional pointer; and the
other one at line 13, where the optional pointer vec is used as
an actual argument of function find() where, and this is the
problem, the corresponding formal parameter is not optional.
5 The diagnostic messages require the programmers to con-
centrate on the intended program logic and take appropriate

3Note that such observations apply also for other problems such as out-
of-bounds accesses.

4In this, we follow MISRA C that, when using the word ‘assignment’ also
covers argument passing (which assigns the value of the actual argument to
the formal parameter), returning an expression from a function (which assigns
the returned value to a corresponding slot in the caller’s activation record),
and using an expression to initialize all or part of an object [4, Glossary].

5If no argument is given to e_opt( ), the default semantics is to consider
zero as the optional value. This decision was made taking into account the
many uses of such annotation on pointer types: annotating a pointer type with
e_opt( ) is thus a shortcut for e_opt( )NULL.



1 #include <crusted.h>

2

3 T *find(T *vec, size_t n, T elem) {

4 for (size_t i = 0; i < n; ++i)

5 if (vec[i] == elem)

6 return &vec[i];

7

8 return NULL;

9 }

10

11 void foo(T * e_opt() vec, size_t n, T elem) {

12

13 T *ptr = find(vec, n, elem);

14

15 // ....

16 }

Fig. 3. Bad handling of null pointers

actions, such as filtering out optional values and/or adding or
amending the annotations. When user-defined functions are
involved, diagnostics may be resolved:

• in the function call, by providing suitable actual argu-
ments and destination for the return value;

• in the function declaration, by adjusting the annotations
of the formal parameters and return type, and by making
sure the function body is coherent with the declaration.

In all cases, this results in increased program readability thanks
to the expressive power of annotations, in particular as far as
function interfaces are concerned. And, when all diagnostic
messages by the C-rusted Analyzer have been addressed, the
effort is rewarded by strong safety and security guarantees
by construction. Optional types are a complete and effective
method for tracking the generation and propagation of null
pointers.

A correct definition and use of function find() is presented
in Figure 4, which contains the required optionality annota-
tions and checks. Note that:

1) In the body of find(), optionality checks for formal
parameter vec are not required, being it a non-optional
pointer (any call to find() passing a possibly null
pointer will raise a warning).

2) In the body of find(), at line 15 there is no need to
explicitly mark the type of ptr as optional because it is a
naked type, i.e., a type without any C-rusted annotations.
In fact, when an operand with naked type appears as
the left operand of an assignment operator, the C-rusted
Analyzer implicitly “transfers” to it the annotations found
in the type of the right operand. This form of type
inference saves typing without endangering safety.

3) For the program in Figure 4 no warnings involving
optional types are reported and, as a consequence, guar-
antees about the absence of null-pointer dereferencing are

1 #include <crusted.h>

2

3 T * e_opt() find(T *vec, size_t n, T elem) {

4 for (size_t i = 0; i < n; ++i)

5 if (vec[i] == elem)

6 return &vec[i];

7

8 return NULL;

9 }

10

11 void foo(T * e_opt() vec, size_t n, T elem) {

12

13 if (vec == NULL) return;

14

15 T *ptr = find(vec, n, elem);

16

17 if (ptr == NULL) return;

18

19 // Do something with `ptr'.

20 }

Fig. 4. Good handling of null pointers

given at compile time by construction.6

B. Memory Leaks, Double Free, Invalid Free, Use After Free

The explicit release of dynamically-allocated memory is the
source of many memory management errors:

• memory leaks (deallocation is too late or never happens);
• double free (deallocation of memory that was already

deallocated);
• invalid free (attempted deallocation memory that was not

allocated);
• use after free (deallocation is too early).

Of those, memory leaks are the only issue that does not
affect safety.7 For all the others, the program behavior is
undefined. This is one of the reasons why coding standards for
the development of safety-critical systems recommend against
or strictly regulate dynamic memory allocation. In MISRA
C:2023, a required directive prevents the use of any form
of dynamic memory allocation (however implemented), while
a required rule explicitly targets the memory allocation and
deallocation functions of <stdlib.h>, which can only be used
if accompanied by a suitable safety argument [4, Dir 4.12,
Rule 21.3].

The Rust programming language is best known for its new
approach to memory management: the ownership model [5].
C-rusted ports such model to the C language through its
annotation language, which allows expressing constraints on

6This does not imply that the program does not trigger other warnings:
in fact it will trigger warnings related to missing bound annotations (see
Section II-E).

7It is a resource management issue that may eventually result into a
memory allocation failure, an issue that has to be handled anyway, typically
by suitable null pointer checks as in the previous section.
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the use of resources via references. A resource is anything that
a C program has to manage. Generally speaking, resources
need to be: allocated or reserved; manipulated by operations
that have to be performed in some predefined order; and
destroyed or deallocated or unreserved. C-rusted supports
different kinds of resources: memory resources and abstract
resources (i.e., any language-defined, system-defined or user-
defined abstraction with a definite lifecycle). A reference is
any C expression that is able to refer to a resource. A valid
pointer and a file descriptor are examples of references.

The C-rusted solution for memory leaks, double free, invalid
free, and use after free is based on owning references. An
owning reference is a special kind of reference annotated with
e_hown() or e_own(). Every resource subject to dynamic
release (as opposed to automatic release, as in the case of stack
variables going out of scope) shall, at all times, be associated
to one and only one owning reference and vice versa: the
owner is the only one responsible for the release of the owned
resource.

The association between the owner and the owned resource
is therefore regulated by the following constraints:

• The owned resource shall not outlive its owner. In partic-
ular, before the owner goes out of scope its association
with the owned resource shall be terminated, releasing
the owned resource by means of a call to a designated
release function using the owner as actual argument.

• Through the program evolution, the owner of a resource
might change, due to a mechanism called ownership
move: the ownership of a resource is moved from an
owner to a new owner due to a copy of the owning refer-
ence. Assignments cause an ownership move if both the
source and the destination types are owning references.

• An owner that loses ownership shall not be used anymore.

1 #define e_opt_hown() e_opt() e_hown()

2

3 void * e_opt_hown() e_size(nmemb*size)

4 calloc(size_t nmemb, size_t size);

5

6 void free(void * e_opt_hown() e_release() ptr);

Fig. 5. Ownership and optionality for some memory allocation and deallo-
cation functions of <stdlib.h>

The ownership model is implicit in the memory allocation
and deallocation functions of <stdlib.h>. Figure 5 shows the
C-rusted interpretation of some of these functions, namely:

• the pointer returned by calloc() is interpreted as if
it was annotated with e_opt_hown(), denoting an op-
tional owning reference to a heap-allocated resource (the
meaning of annotation e_size() will be discussed in
Section II-E);

• the function responsible for the deallocation of heap-
allocated resources is the free() function; it is in-

terpreted as taking an optional8 owning reference to a
heap-allocated resource as parameter, which commits the
function to releasing the resource, if any.

1 #include <crusted.h>

2

3 void do_things(T * e_hown() p);

4

5 void foo(size_t n) {

6

7 T *ptr = malloc(n * sizeof(T));

8

9 if (ptr == NULL)

10 return;

11

12 T *q = ptr;

13

14 *ptr = 42;

15

16 *q = 7;

17 do_things(q);

18

19 free(q);

20

21 q = NULL;

22 }

Fig. 6. Ownership move

Some instances of ownership move are presented in Fig-
ure 6: the ownership is moved from the returned value of
malloc() to ptr at line 7; then another move happens at
line 12 from ptr to q; the last move is at line 17 from actual
argument q to the formal parameter of the do_things()

function, which will take care of releasing the heap-allocated
resource. This program is not a safe C-rusted program: the use
of ptr at line 14 is flagged by the C-rusted Analyzer because
it is a use of a former owner that lost ownership; similarly, the
use of q at line 19 is flagged, as it would result in a double
free error.

Aside from “heap ownership”, C-rusted offers the e_own()

annotation (note the missing ‘h’) to denote a different kind of
ownership, such as ownership of abstract resources and own-
ership of dynamic memory allocated through different, user-
defined allocators. As an example consider the fopen() and
fclose() functions of <stdio.h>: the former is interpreted
in C-rusted as if returning an optional owning reference to a
FILE object, while the latter is considered the release function
for such kind of ownership. A similar use of ownership
concerns the POSIX library functions open() and close().
Such file-related functions will be discussed in more detail in
the sequel.

8Calling free() with a null pointer is well defined in C and has no
effect.



The key point is that the ownership model gives by construc-
tion guarantees about the absence of memory leaks, double
free, invalid free and use after free. A program for which
the C-rusted Analyzer does not give any ownership-related
warnings is a program that follows the ownership model.

C. Aliasing

In general, aliasing occurs when two or more expressions,
the aliases, denote the same entity. Dealing with aliasing is
tricky and can easily lead to programming errors.

Consider for example the program in Figure 7: at first sight,
function add3() seems to correctly make use of function
add2() to compute the sum of three elements. So, the
do_math() function should print the sum of x, y and z, which
is 6, but in fact it prints 8! Clearly, function add3() has not
been designed taking into account the possibility of aliasing
among its formal parameters.

1 #include <crusted.h>

2

3 void add2(int *r, int *a, int *b) {

4 *r = *a + *b;

5 }

6

7 void add3(int *r, int *a, int *b, int *c) {

8 add2(r, a, b);

9 add2(r, r, c);

10 }

11

12 void do_math(void) {

13 int x = 2, y = 2, z = 2;

14 add3(&z, &x, &y, &z);

15 printf("%d\n", z);

16 }

Fig. 7. Aliasing is tricky

Aliasing makes programs difficult to understand, for hu-
mans, and difficult to optimize, for compilers. Moreover,
as the aliasing problem is undecidable, aliasing analysis al-
gorithms are necessarily approximated, which, in turn, has
implications on the precision of other analysis such as live
variables, available expressions (which is used to perform
common subexpression elimination) and constant propagation.
In summary, limiting the possibility of aliasing in ways that
are checkable at compile time is beneficial in a number of
ways.

Note that, in C-rusted, the problem of aliasing for resources
subject to dynamic release is partially addressed by the own-
ership model through the mechanism of ownership move.
But what about other kinds of resources? And what about
referencing a resource without taking the ownership of it?

These concepts are known in Rust under the name of
“borrowing” and are implemented in C-rusted distinguishing
between different kinds of references: in addition to owning

references we have exclusive and shared references, identified
by e_excl() and e_shar() annotations, respectively.

An exclusive reference, as the name suggests, grants exclu-
sive access to a resource and, as a consequence, both read and
write operations are allowed through the exclusive reference.

Exclusive access to resources through exclusive references
is therefore subject to the following constraint: the existence of
a usable exclusive reference to a resource is incompatible with
the existence of any other usable reference (of any kind) to the
same resource. The notion of usability of a reference is rather
technical and is beyond the scope of this paper. Suffice it to
say that, when multiple references to the same resource exist
and at least one of them is owning or exclusive, owning and
exclusive references are paused so as to satisfy the constraint.
For example, an owning reference is paused as soon as another
exclusive or shared reference is created to the same resource:
when such new reference ceases to exist, the owning reference
becomes usable again.

1 #include <crusted.h>

2

3 void bar(int *q, size_t n);

4

5 void foo(size_t n) {

6 int *ptr = calloc(n, sizeof(int));

7

8 if (ptr == NULL) return;

9

10 int * e_excl() r = ptr;

11

12 free(ptr);

13

14 bar(r, n);

15 }

Fig. 8. Exclusive references

Some examples of interaction between owning and ex-
clusive references are presented in Figure 8: at line 10 the
exclusive reference r is created and ptr is paused; at line 12,
however, ptr is used and this generates a warning: ptr will
become usable again only after the last use of r at line 14.

A shared reference to a resource, instead, allows to access
the resource without modifying it. As read-only access via
multiple references is well defined, there may exist several
usable shared references to a single resource. However, as
previously said, during the existence of a shared reference,
any exclusive references to the same resource, if any, are not
usable.

All constraints related to owning, exclusive and shared ref-
erences are checked at compile time by the C-rusted Analyzer
so that, if no warnings are given, problems related to aliasing
are excluded. The only cases of aliasing that will survive this
screening involve shared references only, which, due to their
read-only nature, are harmless.
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Even though C-rusted supports the explicit annotations
to denote exclusive and shared references, in many cases
such annotations are not needed as C-rusted relies on type
inference based on the presence/absence of the restrict and
const qualifiers. Namely, in case of pointers, the C-rusted
Analyzer infers the exclusive or shared nature of a reference
by applying, in order, the following steps:

1) if the pointer is restrict-qualified, then it is an exclusive
reference;

2) otherwise, if the pointer is not restrict-qualified, then:
a) it is a shared reference if the pointee is const-qualified;
b) it is an exclusive reference, otherwise.

1 #include <crusted.h>

2

3 typedef struct {

4 T elem;

5 struct Node_t * e_opt_hown() next;

6 } Node_t;

7

8 void node_print_all(const Node_t *nodep);

9 bool node_insert_after(Node_t *nodep, T elem);

10 Node_t * e_opt_hown() node_ctor(T elem);

11 void node_dtor(Node_t * e_opt_hown() nodep);

Fig. 9. References in a singly-linked list

This is illustrated in Figure 9, where different references are
used to implement nodes of a singly-linked list and some ma-
nipulation functions. The node_print_all() function, which
only needs to read “node” resources in order to print them,
correctly takes as argument a reference to a const-qualified
resource: in C-rusted, this is interpreted as an implicit shared
reference. Note that the concept of shared reference is stronger
than const-qualification: while in C the constness only affects
the directly-referred node, in C-rusted the “shareability” (and
the constness property) is recursively propagated down to the
last node of the list. Another crucial aspect is that, while in C
the constness of an object can be easily bypassed, e.g., using
pointer casts, in a safe C-rusted program this is not allowed.

Resuming the analysis of Figure 9, the first parameter of the
node_insert_after() function (which modifies the list by
inserting a new node after the referred one) is an example
of implicit exclusive reference, whereas the return type of
node_ctor(), whose purpose is the acquisition of a new
node, is an optional owning reference, as the formal parameter
of the destructor node_dtor().

Going back to the tricky aliasing example of Figure 7,
note that the program is not considered a safe C-rusted
program: at line 14 a warning regarding the first and the last
actual arguments of add3()’s call is issued because all the
actual arguments are implicitly exclusive references, thereby
involving the creation of multiple exclusive references to the
same resource z, which is flagged by the C-rusted Analyzer.
For the same reason, a warning is reported at line 9 as well.

Summing up: programs that stick to the ownership model
and correctly use exclusive and shared references not only
are less prone to coding errors related to aliasing: they also
have a simpler logic that possibly enables more optimization
opportunities for the compiler.

D. Invalid Pointers

The notion of invalid pointer includes:

• wild pointers (uninitialized pointers);
• misaligned pointers (pointer storing an address inappro-

priately aligned for the type of object pointed to);
• dangling pointers (pointer to an object that reached the

end of its lifetime).

Using an invalid pointer is undefined behavior.
In a safe C-rusted program, the use of wild pointers is

something that cannot happen because all possible usage of
uninitialized resources (not only pointers) are flagged. This
is possible, also when the code is not available, thanks to
e_uninit() annotation that is used to explicitly mark mem-
ory resources passed to or returned by functions as possibly
uninitialized. An example of that is the memory allocated after
a successful call to malloc() function: malloc()’s return
type is interpreted by the C-rusted Analyzer as if it was
annotated with e_uninit(). The issues related to resource
initialization will be discussed further in Section II-F.

As far as misaligned pointers are concerned, conversions
involving pointers are not permitted in C-rusted, with the
exception of converting to/from void* in order to call or
receive return values from functions of the C Standard Library
and POSIX library.

The constraints imposed by C-rusted upon different kinds
of references provide protection against most of the causes
of the creation and use of dangling pointers, but not all of
them. C-rusted introduces the concept of region: a region is a
disjunctive set of identifiers, each of which denotes a set of
resources. Each reference is, implicitly or explicitly, associated
to a region: this denotes all the resources that are possibly
reachable using that reference. One of the jobs of the C-
rusted Analyzer is to compute the regions of all references
anytime they are used to ensure that all the resources within
the respective regions have not been released.

Given that the analysis performed by the C-rusted Analyzer
is intraprocedural only, some explicit information about re-
gions may be required. An example is given in Figure 10:
the max() function that returns a shared reference could, in
principle:

• always returns a reference to the region of formal param-
eter p1; or

• always return a reference to the region of p2; or
• return a reference to one of them or the other, as it is the

case.

Using region identifiers as arguments to e_excl() and
e_shar() annotations enable the static analyzer to report all
cases where the use of a reference is possibly unsafe because



a released resource is within its region, as it happens at line 17
where the region of ptr is r1 ∪ r2 = { x, y }.9

1 #include <crusted.h>

2

3 T * e_shar(r1, r2) max(T * e_shar(r1) p1,

4 T * e_shar(r2) p2) {

5 if (*p1 > *p2)

6 return p1;

7

8 return p2;

9 }

10

11 void foo(T x) {

12 T *ptr;

13 {

14 T y = 7;

15 ptr = max(&x, &y);

16 }

17 printf("%d\n", *ptr);

18 }

Fig. 10. Regions

The C-rusted Analyzer performs type inference also for re-
gions; for example, if a function returns an exclusive reference
and among formal parameters there is only one exclusive
reference, then their region is assumed to be the same and
no annotation is required. Furthermore, note that the C-rusted
Analyzer checks, for each use of a reference, not only that all
the resources within its region are live but also, for those of
them that are references, that they are usable. Regions, together
with the ownership model and borrowing, ensure temporal
memory safety.

E. Out-of-Bounds Accesses
An out-of-bounds access occurs when a reference to a

memory buffer is used to access (for reading or writing) a
memory location outside of the intended buffer boundaries.

Out-of-bounds accesses are one of the most subtle and
dangerous issues for both software and hardware.10 In fact,

• out-of-bounds accesses are difficult to spot and they can
corrupt memory in an unpredictable way;

• they can be exploited to cause system crashes, to access
private information, and to alter the program control flow
to the point of executing arbitrary code.

In C, a program performing out-of-bounds accesses has
undefined behavior: for the sake of efficiency, C does not
require run-time checks to be performed to ensure safety of
memory accesses.

The solution adopted in C-rusted is to explicitly annotate
references with bound annotations, so that they become itera-
tors and allow the C-rusted Analyzer to statically check that all

9Rust has something similar to the region annotations: these are called
“lifetime annotations.”

10See, e.g., https://cwe.mitre.org/data/definitions/119.html

accesses are within the correct bounds. In all cases where such
guarantees cannot be provided at compile time, a warning is
reported that can be addressed by the programmer by inserting
the appropriate bound checks.

A reference that cannot be used to iterate the referred
resource (i.e., it cannot be incremented or decremented) is
said to be an non-iterable reference. Examples of non-iterable
references are all owning references as well as all references
for which the bounds of the referred resources are not known.

A forward iterator is an exclusive or shared reference that
enables the detection of whether the one-past-the-end element
has been reached. This can be achieved by annotating the
reference with one of the following bound annotations:

• e_size(), which expect as argument an integer variable
representing the number of bytes between the referred
element and the one-past-the-end element;

• e_count(), which expects as argument an integer vari-
able representing the number of elements between the
referred element and the one-past-the-end element;

• e_end(), which expects as argument a reference to the
one-past-the-end element.

Therefore, a forward iterator can be used to forward iterate
until the one-past-the-end element is reached.

Figure 11 illustrates two examples of declaration and use
of forward iterators.

1 #include <crusted.h>

2

3 void foo(T * e_count(n) p, size_t n) {

4 for (size_t i = 0; i < n; ++i) {

5 p[i] = /* ... */;

6 }

7 }

8

9 void bar(T * e_end(end) begin, T *end) {

10 while (begin != end) {

11 // Do something with `begin'.

12 ++begin;

13 }

14 }

Fig. 11. Forward iterators

A bidirectional iterator is an exclusive or shared reference
that enables the detection of whether the beginning element
or the one-past-the-end elements have been reached. Such
information is provided by passing two identifiers to the bound
annotations, denoting the information regarding the beginning
and the past-the-end element, respectively.

C-rusted also offers string iterators: these are exclusive or
shared references having, possibly const-qualified or restrict-
qualified char* type, and either they definitely refer to a null-
terminated string or are formal parameters. Such iterators can
be used to forward iterate the string until the null character is
encountered. Note that the invariance of the null termination
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shall be preserved, for otherwise a warning will be reported
as shown in Figure 12.

1 #include <crusted.h>

2

3 void foo(char *s, char c) {

4 while (*s != '\0') {

5 // Do something with `s'.

6 ++s;

7 }

8

9 *s = c;

10 }

Fig. 12. String iterator with overwriting of the terminator

The problem of detecting out-of-bounds accesses through
static analysis is an undecidable problem. Bound annotations
can be exploited by the static analyzer to improve the analysis
precision, thus obtaining guarantees of spatial memory safety
without sacrificing performance for a wider range of situations.
When the code is particularly convoluted and the C-rusted
Analyzer is not able to prove the absence of out-of-bounds
accessed despite bound annotations, then the required bound
checks can be explicitly added in the code, so that the static
analyzer can exploit them to provide safety guarantees: in
those cases, a little bit of run-time overhead will be the price
to pay to obtain spatial memory safety.

F. Reading Uninitialized Memory

In C it is possible to have uninitialized memory: this is
memory whose value is indeterminate until it is written for the
first time. Reading uninitialized memory is undefined behavior.

C-rusted manages uninitialized memory similarly to op-
tional types: every formal parameter is considered as initialized
by default, meaning that whenever possibly uninitialized mem-
ory is passed to or returned from a function, this shall be made
explicit via a e_uninit() annotation. This is what happens,
implicitly, for the return type of the malloc() function. This
requires the support for initialization functions: the e_init()

annotation is used to annotate formal parameters so as to
specify that the function will completely initialize the referred
resource (i.e., it will write it completely and not read any part
of it without prior writing).

Two initialization functions are depicted in Figure 13: note
that the initialization reference is an exclusive reference and, in
the case of arrays, bound information can be provided so that
the reference becomes a forward iterator capable of initializing
the whole array.

III. NOMINAL TYPING

Nominal typing is a restriction placed by strong type systems
whereby two types are compatible only if they have the same
name, independently from their underlying representation. In
the C world, this concept is already present in the MISRA C
essential type model [4]: a Boolean is not an integer, even

1 #include <crusted.h>

2

3 void elem_init(T * e_init() p);

4

5 void vec_init(T * e_init() e_count(n) vec,

6 size_t n) {

7 for (size_t i = 0; i < n; ++i) {

8 if (SOME_CONDITION)

9 elem_init(&vec[i]);

10 else

11 vec[i] = i;

12 }

13 }

Fig. 13. Resource initialization

when it is represented by an int, as it may be the case in
C90 implementations [6], [7]. Similarly, an object of enu-
merated type is not an integer, despite being represented by
an implementation-defined integer type. Generally speaking,
nominal typing allows to impose a clear separation between
the C data type representation and the semantics of the partic-
ular type, preventing unwanted and often dangerous operations
on nominal types, such as conversions, arithmetic and bitwise
manipulation.

1 typedef int e_type() fd_t;

2 typedef fd_t e_own() fd_own_t;

3 typedef fd_own_t e_opt(-1) fd_opt_own_t;

4

5 fd_opt_own_t open(const char *path,

6 int oflag);

7

8 int close(fd_opt_own_t e_release() fildes);

Fig. 14. C-rusted view of open() and close()

Nominal typing is fully supported by C-rusted’s type sys-
tem: as an example, file descriptors are recognized and treated
as nominal types. Figure 14 shows how some functions in-
volving file descriptors are interpreted in C-rusted: in addition
to the optionality and ownership information conforming to
the POSIX specification, the e_type() annotation is used to
specify that fd_t and all the types derived from it are nominal
types. Resources of type fd_t are file descriptors and, even
if at a C level they are represented using integers, they have
nothing to do with integers. In particular, they cannot be mixed
converting one to the other, and operations that are permitted
on integers are not permitted on file descriptors.

It is also possible to use global annotations e_uop() and
e_bop() to define, respectively, unary and binary nominal
operations: a method to explicitly permit or deny operations
on the types given as arguments.

When the power of nominal typing is put into the hands



of programmers, a number of applications emerge that have
the potential of preventing many programming errors: as an
example, nominal typing can prevent accidentally mixing dif-
ferent unit of measure in a program that manipulates physical
entities, independently of the underlying C data types.

IV. SAFE AND UNSAFE BOUNDARIES

Sometimes, the need may arise to use some of the features
of the C programming language without submitting to the
constraints imposed by C-rusted. This can happen in the
implementation of some libraries, in the development of low-
level systems where access to the hardware is essential or
in peculiar portions of a program where the code is par-
ticularly convoluted and obscure; for such cases, the static
analyzer may be afflicted by false positives. For all these
situations, a feasible solution might be to temporary “escape”
some of the constraints imposed by C-rusted: e_unsafe(),
e_unchecked() and e_checked() annotations allow this.
e_unsafe() annotation identifies data types, functions and

operations that are “unsafe” on their own or are considered
unsafe because they encapsulate and/or use other unsafe enti-
ties: in this context “unsafe” means “requiring special care and
knowledge in order to ensure safety.” This also can be used
to enforce information hiding and a sharp separation between
interface and implementation by means of a flexible access
restriction system.

An example where this is applied concerns the pointers to
the FILE objects used to control the standard I/O streams. The
application programmer obtains such pointers by calling the
fopen() standard function, but these ought to be treated as if
they were not pointers at all: just atomic, unique identifiers
with a NULL special value. If they were implemented as
opaque pointers some of the potential issues (e.g., copies of a
FILE object may not give the same behavior as the original)
would be prevented, but there is no such a guarantee. In
fact, MISRA C has a mandatory rule that bans dereferencing
pointers to FILE [4, Rule 22.5]. Figure 15 shows how the
fopen() and fclose() functions are seen by C-rusted: the
e_unsafe("FILE") annotation ensures that, by default, all
accesses to FILE objects are flagged by the C-rusted Analyzer.
Note that the string literal argument in e_unsafe() is arbi-
trary, which allows an unlimited number of “unsafety kinds.”

For the implementation side, C-rusted provides two anno-
tations: e_unchecked() and e_checked(). The first marks
a statement as not expected to conform to the C-rusted
safety and security requirements: every function containing
unchecked statements shall thus be annotated as unsafe. The
latter also marks a statement as not expected to conform to the
C-rusted syntax and semantics, but its use is guaranteed to be
safe by the programmer under every aspect of C-rusted needed
warranties. An example is presented in Figure 16 where, in
order to correctly implement the fclose() function, all the
accesses to a FILE object are encapsulated within the proper
safety annotation as it happens in Line 6. As a result, under

1 e_decl_props(FILE, e_unsafe("FILE"));

2

3 #define e_opt_own() e_opt() e_own()

4

5 FILE * e_opt_own()

6 fopen(const char * restrict filename,

7 const char * restrict mode);

8

9 int fclose(FILE * e_own() e_release() fp);

Fig. 15. C-rusted view of fopen() and fclose()

1 #include <crusted.h>

2

3 int fclose(FILE * e_own() e_release() fp) {

4 // ...

5

6 e_checked("FILE") {

7 if (fp->flags == 0U) {

8 errno = EBADF;

9 return EOF;

10 }

11 }

12

13 // ...

14 }

Fig. 16. Fragment of fclose() implementation with C-rusted annotations

the responsibility of implementers, function fclose() will be
considered as safe by the C-rusted Analyzer.

This model is powerful, flexible and can be used to cover
similar types, such as type sem_t of the POSIX library, and
user-defined entities.

Note how this approach leads to the correct propagation
and, at the same time, the correct encapsulation of (possibly)
unsafe operations within the proper safety checks.

V. IMPLEMENTATION

The implementation of the C-rusted Analyzer is based on
the ECLAIR Software Verification Platform.

The static analysis component is formalized in terms of
abstract interpretation [8]. The analysis is rigorously intrapro-
cedural, i.e., it is done one function at a time, using only the
information available for that function in the translation unit
defining it, which includes the annotations possibly provided
in function declarations.

The analysis domains include a very precise flow-sensitive
and field-sensitive points-to analysis. Other analyses involve
variable liveness and the tracking of numeric information
through value range analysis based on constraint propagation
over multi-intervals. Relational constraints among variables
are tracked using the Parma Polyhedra Library (PPL) [9]. In
addition, there are several finite domains specifically conceived
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for C-rusted, which track the state of resources and references
as well as the evolution of dynamic semantic properties.
Scalability is ensured by intraprocedurality.

All the annotations of C-rusted are realized via macro
invocations: the corresponding macros all expand to the empty
token sequence (with the exception of global annotations,
which expand to something that obeys ISO C syntax and is
ignored by the compiler) so that, as far as the compiler is
concerned, after translation phase 4 [2, Section 5.1.1.2] it is
as if they never existed. Of course, the C-rusted Analyzer uses
all the information provided by the annotations before letting
the preprocessor making them vanish.

VI. CONCLUSION

C-rusted is a pragmatic and cost-effective solution to up the
game of C programming to unprecedented integrity guarantees
without giving up anything that the C ecosystem offers today.
That is, keep using C, exactly as before, using the same
compilers and the same tools, the same personnel. . . but
incrementally adding to the program the information required
to demonstrate correctness, using a system of annotations
that is not based on mathematical logic (or other complex
languages) and can be taught to programmers in a week of
training.

This technique is not new: it is called gradual typing, and
consists in the addition of information that does not alter the
behavior of the code, yet it is instrumental in the verification
of its correctness. Gradual typing has been applied with
spectacular success in the past: Typescript has been created 10
years ago, and in the last 6 years its diffusion in the community
of JavaScript developers has increased from 21% to 69%. And
it will continue to increase: simply put, there is no reason for
writing more code in the significantly less secure and verifiable
JavaScript language [10].

For C, a similar approach is the one of Checked C [11].
There, gradual typing is used to extend C with static and
dynamic checking aimed at detecting or preventing buffer
overflows and out-of-bounds memory accesses. Checked C
supports annotations for pointers and array bounds and the
use of static analysis to validate existing annotations and to
infer new ones. Note, though, that Checked C is a different
language than C: the compilation of Checked C code requires
a special compiler.

C-rusted is not a new programming language: C-rusted code
is standard ISO C code just used in a peculiar way and in
association with suitable static analysis techniques. As such,
C-rusted benefits from the huge investment the industry has
made into C in terms of compilers, tools, developers, coding
standards and code bases. For instance, C-rusted is 100%
compatible with MISRA C: a C program that is MISRA com-
pliant can be annotated without negatively impacting MISRA
compliance.

Furthermore, an annotated C-rusted program validated by the
C-rusted Analyzer has strong guarantees of compliance with
respect to guidelines, such as those concerning the disciplined
use of resources, error handling and possibly tainted inputs,
for which compliance is much harder to achieve and argument
in other ways.

Functional safety standards such as ISO 26262 [12] pre-
scribe the use of safe subsets of standardized programming
languages used with qualifiable translation toolchains (see,
e.g., [13] and [14]). Insofar a C-rusted program is a standard
ISO C program where the presence of annotation does not
invalidate MISRA compliance, C-rusted fits the bill as C does
and more, due to the strong guarantees provided by annotations
and any qualified C compiler is, as is, a qualified C-rusted
compiler.
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