
C, Rust, C-rusted and MISRA
for Safe and Secure Embedded Software

Roberto Bagnara
University of Parma, Italy

Email: name.surname@unipr.it

Nicola Vetrini, Luca Ciucci, Abramo Bagnara
BUGSENG, Italy

Email: name.surname@bugseng.com

Federico Serafini
BUGSENG, Italy

Email: name.surname@bugseng.com
Ca’ Foscari University of Venice, Italy

Email: name.surname@unive.it

Abstract—C has long been the dominant programming lan-
guage for embedded systems due to its efficiency, portability, and
close-to-hardware capabilities. However, C’s low-level memory
management and absence of strong safety guarantees expose it
to common vulnerabilities such as out-of-bounds accesses, null
or invalid pointer dereferencing and memory leaks. To mitigate
risks associated with C’s flexibility and potential for misuse, the
MISRA guidelines became a de facto standard in all sectors
where safety and security are crucial. Nonetheless, the embedded
systems community, following a trend common to the entire IT
world, has been exploring alternatives like Rust. Rust’s design
inherently reduces the likelihood of common programming errors
seen in C, making it an appealing choice for safety- and security-
critical embedded software. However, transitioning from C to
Rust is not without challenges and hence proposals, such as
C-rusted, that can provide a gradual migration path with the
same guarantees of Rust but in standard C, are particularly
interesting. This presentation features a comparative analysis
of C, Rust, C-rusted and the MISRA guidelines (including the
potential for a possible MISRA Rust coding standard), with a
focus on their implications for embedded software safety and
security. We discuss the respective strengths, limitations and use
cases, offering insights into how organizations can choose and
apply these tools and methodologies based on specific project
requirements.

I. INTRODUCTION

The need for a much more secure software infrastructure
has become increasingly acute over the years. Vulnerabilities
in software continue to pose serious risks, leading to security
breaches, financial losses, and threats to human safety, espe-
cially in industries such as automotive, aerospace, railways,
and medical devices.

Recognizing these challenges, governmental and regulatory
bodies have intensified efforts to improve software security.
In particular, reports from the U.S. Cybersecurity and Infras-
tructure Security Agency (CISA) [1], [2] and the White House
Office of the National Cyber Director (ONCD) [2] have accel-
erated the push towards adopting memory-safe programming
languages as a fundamental cybersecurity strategy.

Among memory-safe languages, Rust has emerged as a
strong candidate. First introduced 15 years ago, Rust enforces
memory safety and concurrency guarantees through its own-
ership model, preventing many classes of vulnerabilities that
have plagued C and C++. However, while Rust is a valuable

tool, a full transition from C to Rust is neither practical nor
cost-effective in the short term. In fact:

1) The cost of transition: migrating entire legacy systems to
Rust would incur prohibitive costs in terms of redevelop-
ment, revalidation, and retraining personnel.

2) Rust is not free from undefined behavior: while Rust
eliminates many common C vulnerabilities, it still has its
own form of undefined behavior, particularly in unsafe
Rust, which is often required for low-level operations.

3) Many of the tools available for C/C++ development
are not (yet) available for Rust. In particular, no Rust
compiler exists for many architectures in wide use in
embedded systems.

While Rust presents a compelling solution for improving
software safety and security, it is important to temper the
prevailing enthusiasm with a pragmatic and balanced perspec-
tive. The notion that Rust is a universal remedy capable of
eliminating all safety and security issues is overly simplistic.
Instead, a more measured and strategic approach should be
taken — one that acknowledges Rust’s strengths while also
recognizing the value of incremental enhancements within the
existing C ecosystem. Indeed, the current hype around Rust
has underestimated at least three factors:

1) The role of the MISRA guidelines: MISRA C, estab-
lished 25 years ago, provides well-defined safety and
security coding guidelines for C. Its long-standing pres-
ence and broad adoption across safety-critical industries
have allowed organizations to leverage the existing C
ecosystem while achieving significant improvements in
software safety. The misconception about the MISRA
guidelines being only applicable to embedded system —
something that is completely false since the publication
of MISRA C:2012 [3] — is probably the main cause why
their role has been underestimated.

2) Rust needs guidelines as well: besides its cases of unde-
fined behavior, the language has plenty of complex con-
structs and features that may easily confuse programmers.

3) The case for C-rusted: C-rusted [4], [5] is a natural
evolution that enhances the C language by introducing
concepts from Rust, such as ownership, exclusivity, and
static verification of memory safety properties. This ap-
proach enables industries to adopt modern safety features

www.embedded-world.eu

without discarding their existing investments in C-based
software and tooling.

A well-considered transition plan, rather than an outright re-
placement of legacy systems, is key to ensuring both feasibility
and long-term success.

Given these considerations, we believe a pragmatic ap-
proach to improving cybersecurity could involve the integrated
adoption of MISRA C, C-rusted, and Rust. This paper ex-
plores how these technologies can be used together to achieve
an incremental and cost-effective transition towards memory
safety and stronger cybersecurity. Additionally, we recognize
that Rust, like C, requires its own set of coding guidelines
for safety-critical applications. Thus, we present a mapping
of MISRA C guidelines to Rust, identifying which rules are
applicable, in adapted form, and where new guidelines are
needed to ensure that Rust meets the safety and security
requirements of industries traditionally dominated by C. By
adopting a multi-tiered strategy, industries can preserve their
existing investments while gradually incorporating memory-
safe programming practices, leading to safer and more resilient
software infrastructures.

The plan of the paper is as follows: the next section
introduces the topic of memory safety and the role of Rust
in the current debate, it recalls the pros and cons of the C
programming languages as well as the mitigation provided by
its MISRA C subset, and it introduces C-rusted; Section III re-
minds us that Rust too has undefined and erroneous behaviors
and that, moreover, it is only defined by its implementation;
Section IV provides the elements of a possible Rust coding
standard based on MISRA C:2025 showing that around 35%
of the MISRA C guidelines may sensibly be adapted to safe
Rust whereas around 58% of them, suitably modified, are
applicable to unsafe/FFI Rust; Section V explores some of the
synergies between C-rusted and MISRA C showing how the
constraints of C-rusted helps in achieving MISRA compliance
and the other way around; Section VI discusses the possible
integration of MISRA C, C-rusted, and Rust — subsetted
along the lines proposed in this paper — in safety-critical
industries; Section VII concludes.

Note: Section IV assumes the reader has familiarity with
both Rust [6] and MISRA C:2025 [7]: we recommend having
a copy of the latter handy while reading that section. The paper
has been written so that a reader can skip the more technical
part of Section IV without losing comprehension of the rest
of the paper.

II. THE QUEST FOR MEMORY-SAFE AND EFFICIENT
PROGRAMMING LANGUAGES

Historically, programmers have always sought for languages
and tools that, on the one hand, were able to produce fast and
memory-efficient executables, while at the same time being
easy to reason about and program in order to adapt to an
ever-changing landscape of needs and requests by the industry.
These two goals have long been viewed as — and, until
recently, they truly were — difficult to reconcile. As a result,

the tradeoff has often been resolved by prioritizing efficiency,
frequently at the expense of safety and security.

Recently, there has been a strong acceleration towards
memory-safe languages. This movement has resulted in two
publications that have had, and continue having, a deep impact
on the industry at large [1], [2].

The first publication is a report titled “The Case for Memory
Safe Roadmaps: Why Both C-Suite Executives and Technical
Experts Need to Take Memory Safe Coding Seriously” and
is a collaborative effort by the U.S. Cybersecurity and Infras-
tructure Security Agency (CISA), National Security Agency
(NSA), Federal Bureau of Investigation (FBI), and the cyber-
security authorities of Australia, Canada, the United Kingdom,
and New Zealand [1]. It addresses the pervasive issue of
memory safety vulnerabilities in software development and
advocates for a strategic shift towards memory-safe program-
ming practices. The report acknowledges that memory safety
vulnerabilities constitute a significant portion of disclosed soft-
ware vulnerabilities, leading to frequent security updates and
patches. Despite substantial investments in mitigation efforts,
these vulnerabilities persist, imposing ongoing costs on both
manufacturers and users. The report thus advocates transition-
ing to Memory Safe Programming Languages (MSLs), as they
can effectively eliminate significant classes of memory safety
vulnerabilities, reducing the need for continuous mitigation
efforts. The idea is that, in the long term, MSLs will yield
significant benefits by enhancing product security and reducing
associated costs over time. Therefore this is a call to action
to manufacturers and senior executives, who are urged to
prioritize the adoption of MSLs in their development processes
as they could be held responsible for the security impacts
of their products on customers. An appendix provides an
overview of some of the programming languages that the
report considers to be MSLs.

The second influential publication is titled “Back to the
Building Blocks: A Path Toward Secure and Measurable Soft-
ware” and was released in February 2024 by the White House
Office of the National Cyber Director (ONCD). It outlines
strategies to enhance software security and measurability [2].
In particular, it emphasizes the need for systemic changes in
software development to reduce vulnerabilities and improve
cybersecurity quality by means of the adoption of:

• Memory Safe Languages that inherently prevent memory-
related vulnerabilities, reducing common security issues.

• Memory Safe Hardware, that is, hardware architectures
designed to enforce memory safety at the hardware level,
thereby complementing software efforts.

• Formal Methods, that is, mathematical techniques, such
as abstract interpretation [8] and model checking [9], to
prove the correctness of algorithms and systems, ensuring
they function as intended without vulnerabilities.

The report also highlights the difficulties in quantifying soft-
ware security and quality, which impede the ability to assess
and manage risks effectively: developing reliable metrics can
inform stakeholders, guide improvements, and shift market
forces towards prioritizing cybersecurity. The report concludes

that, by focusing on these foundational aspects, the software
industry can and should move toward a more secure and
resilient digital environment.

A. The Success of and Challenges of C

C has long been the go-to language for low-level and
systems programming tasks, where performance is as critical
as the ergonomics of the programming language. This is
largely due to a number of well-known factors:

• it is a relatively simple language, that can be learned at a
superficial level in a matter of days by a person already
familiar with programming;

• the investments done by many industries led to the growth
of an ecosystem of tools encompassing almost any task
a programmer could ever think of;

• as a consequence, almost any chip in existence can be
programmed in C with the help of a compiler;

• due to its relative closeness to assembly (some say that C
is a cross-platform assembly), its abstractions have near-
zero cost in most cases, and an expert programmer can
estimate the Worst Case Execution Time (WCET) of an
algorithm written in C just by looking at the source code;

• by relying on the assumed absence of undefined behav-
ior in a program, an optimizing compiler can achieve
impressive performance with many programs.

However, these advantages come with a cost, which is
memory (un)safety: C places most of the burden on the
programmer to reliably manage allocated memory, not go
beyond the bounds of aggregate objects, initialize automatic
storage data before accessing it and many other traps that,
even for very experienced programmers, are easy to fall into.

These issues are well-known: indeed, C criticism for the
ease with which memory handling programming mistakes are
committed dates back to shortly after the language was made
available to the public [10].

There have been countless attempts over the years to try to
mitigate or sidestep these important concerns. Most of these
did not get any traction due to several reasons:

• Some aim to tackle the issue by modifying the language
syntax and/or semantics, often requiring programmers to
use a new compiler or preprocessor in order to translate
such programs into executables; while it could be argued
that the new C dialect offers many benefits for safety, it
is indeed a different language, not supported by existing
tooling. One such example is the Cyclone language [11],
which requires its own cyclone compiler.

• Some employ formal methods in order to prove the
correctness of certain pieces of code. Frequently this is
done via the definition of a system of annotations for
the program often based on first-order logic or related
formalisms, with the help of a proof assistant or some
static code analysis tool that checks the coherence of the
specification with the source code. This approach has the
benefit of being able to prove that certain properties hold
for a program. It has been shown to be too complicated

for programmers to reason about in non-trivial cases and
thus undesirable because it reduces development speed
and is still prone to human error. One such example is
the ANSI/ISO C Specification Language (ACSL) [12] and
its counterpart ACSL++ for C++.

• Compiler-specific annotations such as __nullable and
__nonnull in LLVM Clang1 only address specific as-
pects, such as whether a pointer is expected to be poten-
tially NULL or not. However, their implementations can
vary between compilers and while they provide some
useful additional safety checks, they cannot be blindly
trusted when developing safety-critical software. Com-
piler implementers typically do not provide any formal
soundness or completeness guarantees. For instance, what
they report might depend in a non-trivial way on the
selected optimization level [13].

None of the proposed solutions to improve safety when
programming in C, which fall in one or more of the approaches
outlined above, while useful, were able to significantly impact
the traditional development processes used within the C com-
munity. Their usage remains a niche at best, as traditional
static or dynamic analysis techniques remain the norm rather
than the exception.

In recent years, one of the more compelling proposals for
a safer general-purpose programming language that has been
a strong candidate to replace C and C++ in some application
domains is the Rust programming language.

B. The Emergence and the Promises of Rust

Rust is a programming language designed for safety, concur-
rency, and performance. It was created by Graydon Hoare, first
as a personal project and later officially sponsored by Mozilla.
The first public release was in 2012, and its first stable release
was in 2015. The language, which is now developed by the
Rust Foundation, is evolving rapidly, with a new release every
six weeks. The key features of Rust are:
Memory safety without garbage collection: Rust enforces

strict memory safety rules at compile time. These are
based on an ownership model with borrow checking to
manage memory and prevent issues like use-after-free,
null pointer dereferencing, and memory leaks (without
the need for a garbage collector).

Concurrency without data races: The ownership system
ensures that mutable state is accessed safely across mul-
tiple threads.

Zero-cost abstractions: Rust provides high-level abstrac-
tions which, thanks to compiler optimization, have a
performance comparable to C and C++. For instance,
high-level iterator abstractions are as fast as and safer
than manual array indexing.

Strong typing and pattern matching: Rust has a strongly
typed, statically checked type system, which prevents
many common programming errors. For example, there

1https://clang.llvm.org/docs/analyzer/developer-docs/nullability.html, last
accessed on March 7, 2025.

www.embedded-world.eu

https://clang.llvm.org/docs/analyzer/developer-docs/nullability.html

are very few implicit type conversions. The extensive
use of pattern matching and enums has the potential of
improving code clarity and correctness. Pattern matching
allows eliminating long if-else chains (and it works with
enums, structs, tuples, and even arrays) and ensures
exhaustiveness checking — the compiler forces the pro-
grammer to handle all cases.

Interoperability with C: Rust supports an FFI (Foreign
Function Interface) for seamless integration with C code-
bases, which can be used to replace parts of C/C++
projects incrementally.

While syntactically and semantically Rust shares a lot more
similarities with multi-paradigm object-oriented programming
languages such as C++ and Java, the core model of object
lifetime management is radically different and aims to solve
many of the issues of memory safety that C and C++ still pose,
even with the help of powerful tooling to help the programmer
spot the most blatant mistakes.

In the last few years, Rust has seen an ever-growing pool of
open-source and proprietary projects adopting its use. Among
the best-known open-source projects are the Linux kernel2 and
the Zephyr RTOS.3

C. MISRA C: A Safe and Secure Subset of C

MISRA C is a set of coding guidelines for the C program-
ming language, which has been continuously developed by
MISRA over the past quarter century to improve software
safety, security, reliability, and maintainability, particularly in
(but not limited to) embedded systems. MISRA C is widely
used in all industries, such as automotive, railways, aerospace
and medical devices where safety and security are paramount.
The first edition of MISRA C was published in 1998 [14] and
the version that is current at the time of publishing this paper
is MISRA C:2025 [7].

The MISRA C guidelines restrict unsafe or ambiguous
constructs in the C programming language, with a strong focus
on safety and security. They prescribe and help eradicate all
undefined and unspecified behaviors as well as minimize the
risks associated with implementation-defined behavior in C,
thereby preventing run-time errors such as buffer overflows,
pointer misuse, and data races. Guidelines are categorized as
mandatory, required, and advisory, depending on their severity
and necessity. For further details on MISRA C we refer the
interested reader to the official document [7] and to [15], [16],
[17], [18], [19].

D. C-rusted: The Guarantees of Rust in ISO C

C-rusted is an innovative approach that enhances the C
programming language by introducing annotations to express
ownership, exclusivity, and shareability of resources, as well
as dynamic properties of objects and their evolution during
execution [4], [5]. These annotations enable static analysis
tools to validate code, ensuring that annotated sections are

2https://rust-for-linux.com/, last accessed on March 7, 2025.
3https://github.com/zephyrproject-rtos/zephyr-lang-rust, last accessed on

March 7, 2025.

1 T *find(T *vec, size_t n, T elem) {
2 for (size_t i = 0; i < n; ++i)
3 if (vec[i] == elem)
4 return &vec[i];
5 return NULL;
6 }
7

8 void foo(T * e_opt() vec, size_t n, T elem) {
9 T *ptr = find(vec, n, elem);

10 }

Fig. 1: C-rusted: Explicit-only optional pointers prevent null
pointer dereference

1 void do_things(T * e_hown() p);
2

3 void foo(size_t n) {
4 T *ptr = malloc(n * sizeof(T));
5 if (ptr == NULL) return;
6 do_things(ptr);
7 free(ptr);
8 }

Fig. 2: C-rusted: Ownership transfer prevents double free

free from a wide range of logical, security, and run-time errors.
Importantly, annotated C-rusted code remains compatible with
standard ISO C compilers, allowing developers incrementally
adopting these safety features without overhauling existing
codebases.

The following examples illustrate how C-rusted improves
memory safety and security while maintaining full compati-
bility with existing C compilers and toolchains.

1) Handling Null Pointers with Optional Annotations: In C-
rusted, pointers in function signatures can be null only if they
are annotated as optional by means of e_opt() annotations.
This ensures that null pointers are properly tracked and flagged
when misused. Consider the example in Figure 1: here, the C-
rusted Analyzer reports two warnings:

Line 5: The function find() returns NULL, but its return type
is not explicitly marked as optional.

Line 9: The optional pointer vec is passed to find(), but
find() does not expect an optional pointer, introducing
a potential null-pointer dereference.

By enforcing proper use of optional pointers, C-rusted helps
eliminate null pointer dereferencing errors at compile time, a
major source of vulnerabilities in traditional C.

2) Ownership and Memory Management: C-rusted intro-
duces owning references using the e_hown() annotation. This
allows enforcing strict ownership rules similar to Rust, pre-
venting double frees, memory leaks, and use-after-free errors.
The example in Figure 2 illustrates the notion of ownership
transfer. In this case:

Line 4: Ownership of the allocated memory is transferred
from malloc() to ptr.

Line 6 Ownership is moved to the do_things() function,
which is responsible for releasing the memory.

https://rust-for-linux.com/
https://github.com/zephyrproject-rtos/zephyr-lang-rust

1 void add2(T *r, const T *a, const T *b) {
2 *r = *a + *b;
3 }
4

5 void add3(T *r, const T *a, const T *b, const T *c) {
6 add2(r, a, b); add2(r, r, c);
7 }
8

9 void do_math(void) {
10 T x = 2, y = 2, z = 2;
11 add3(&z, &x, &y, &z);
12 printf("%d\n", z);
13 }

Fig. 3: C-rusted: Implicit shared and exclusive references
prevent aliasing issues

1 void bar(T *q, size_t n);
2 void foo(size_t n) {
3 T *ptr = calloc(n, sizeof(T));
4 if (ptr == NULL) return;
5 T * e_excl() r = ptr;
6 free(ptr);
7 bar(r, n);
8 }

Fig. 4: C-rusted: Exclusive reference prevents use-after-free

Line 7 The C-rusted Analyzer detects an error here: ptr has
lost ownership, and calling free(ptr) could cause a
double free vulnerability.

By applying systematic ownership tracking, C-rusted prevents
memory safety violations without runtime overheads.

3) Preventing Aliasing Issues with Exclusive and Shared
References: C-rusted introduces exclusive and shared refer-
ences, inspired by Rust’s borrowing model. This helps elimi-
nate aliasing issues and ensures that a resource is either mu-
tably borrowed (exclusive reference) or immutably borrowed
(shared reference, read-only). The exclusive or shared nature
of a reference can be forced by the programmer using annota-
tions, but it is also inferred by the static analyzer looking at the
restrict and const qualifiers: if an unannotated pointer is
restrict-qualified, then it is an exclusive reference; otherwise, if
the pointer is not restrict-qualified, then it is a shared reference
if the pointee is const-qualified; otherwise, it is an exclusive
reference. Consider the example in Figure 3: at first glance,
this may seem correct, but calling add3(&z, &x, &y, &z)

introduces aliasing issues, where r is both modified and used
as input in add2(). The C-rusted Analyzer flags this at
compile time, at lines 6 and 11, ensuring that potential data
races and unexpected behavior are prevented.

4) Usability and Borrowing Rules: C-rusted introduces us-
ability constraints that enforce correct lifetimes of references.
The example in Figure 4 demonstrates an incorrect usage
pattern. In fact:
Line 5: ptr is paused because r is created as an exclusive

reference via the e_excl() annotation.
Line 6: There is an error here: ptr is used in free(ptr)

before r has finished being used. The C-rusted Analyzer

correctly flags this, ensuring that ptr is only freed when
no active references exist.

III. RUST (UN)SAFETY

The Rust programming language can be divided into two
parts: safe Rust and unsafe Rust, with the former being a
subset of the latter. In fact, there are some operations that
are permitted only in unsafe Rust: dereferencing raw pointers,
call an unsafe function or method, access or modify a mutable
static variable, implement an unsafe trait and access fields of
a union. These operations are necessary in order to perform
the following tasks:

• do system-level programming, where low-level details
about memory and data representation must be accessible
and directly manipulated by the programmer;

• performance optimizations, to avoid run-time checks that
can be automatically inserted by the Rust compiler;

• interface with foreign languages, such as C or assembly,
used to implement lower layers of operating systems and
libraries;

• build abstractions, since all high-level abstraction offered
by Rust need to be implemented with efficient and low-
level operations.

Unsafe Rust is therefore essential to build real-world appli-
cations [20], but it has some drawbacks: while for the safe
subset the compiler enforces rules such as ownership and
borrow checking to ensure strong memory safety guarantees,
for unsafe Rust the correctness is under the programmers
responsibility (similar to C and C++). An incorrect use of
unsafe code can trigger undefined behaviors that can lead to
safety and security issues. This is the reason why unsafe

blocks should be introduced with care, trying to minimize their
number and complexity. For instance, the approach taken by
the Rust for Linux project, as mentioned in section II-B, is
to define Rust wrappers for the kernel C APIs for various
subsystems. These wrappers need to be defined using unsafe
blocks, but other software that depends on those wrappers,
such as a driver for a Wi-Fi card, can be written in safe Rust.

A. Rust Undefined Behavior

While the vast majority of Rust functionality is well-
documented, despite the absence of a formal specification for
the language, there are some constraints on what a valid Rust
program can do and what kind of behaviors are defined, even
if erroneous, or undefined. The Rust Reference lists a series of
behaviors considered undefined;4 it is noted in the document
itself, however, that such a list is not meant to be exhaustive
or fixed in any way: Rust’s semantics is not fully defined,
therefore some behaviors may be undefined, yet not appear in
this list. Such behaviors are:
RUB.01 (Data race) Two or more threads concurrently ac-

cess a memory location, where at least one access is a
write and at least one of them is unsynchronized.

4https://doc.rust-lang.org/stable/reference/behavior-considered-
undefined.html, last accessed on March 7, 2025.

www.embedded-world.eu

https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html

RUB.02 (Illegal memory access) Accessing (loading from
or storing to) a place5 that is dangling or based on a
misaligned pointer.

RUB.03 (In-bounds pointer arithmetic violation)
Performing a place projection (field expression,
tuple indexing or array/slide indexing) that violates the
requirements of in-bounds pointer arithmetic.6

RUB.04 (Breaking the pointer aliasing rules) Breaking
any noalias constraint of the LLVM IR (Intermediate
Representation) on pointers (akin to C’s restrict

qualifier).
RUB.05 (Mutating immutable bytes) Performing a mem-

ory write of one or more bytes that overlap with bytes
that are directly or implicitly immutable according to the
language semantics.

RUB.06 (Undefined behavior via compiler intrinsics)
Invoking undefined behavior via compiler intrinsics.

RUB.07 (Depending on unsupported platform features)
Executing code compiled with a platform feature that
the current platform does not support, unless this is
explicitly documented to be safe.7

RUB.08 (Wrong ABI) Calling a function with the wrong call
ABI or unwinding from a function with the wrong unwind
ABI.

RUB.09 (Producing an invalid value) Reading from a place
or assigning an invalid value to it (passing a parameter to
a function counts as an assignment, similar to MISRA’s
definition of assignment in C).

RUB.10 (Incorrect use of inline assembly) The Rust Ref-
erence [21] has specific guidance on the rules that pro-
grammers must follow when writing inline assembly;8

failing to comply with all the constraints results in
undefined behavior.

RUB.11 (Invalid pointer reinterpretation) In a context that
is evaluated at compile time, the behavior is undefined
if a pointer is reinterpreted or transmuted (e.g., via
std::mem::transmute) into a non-pointer type, such
as an integer.

It is very important to note that, as is the case in C and
C++, Rust undefined behavior affects the entire program. For
example, if a Rust program calls a C function that exhibits
undefined behavior of C, this means that the entire program
has undefined behavior, including the Rust code. And the other
way around: undefined behavior in Rust can cause adverse
affects on code executed by any FFI calls to other languages. It

5A place in Rust is defined by a place expression (https://doc.rust-lang.
org/reference/expressions.html#place-expressions-and-value-expressions, last
accessed on March 7, 2025) and roughly represents a memory location in
the source code. A concrete representation is rustc MIR’s Place (https:
//doc.rust-lang.org/beta/nightly-rustc/rustc middle/mir/struct.Place.html, last
accessed on March 7, 2025).

6https://doc.rust-lang.org/stable/std/primitive.pointer.html, last accessed on
March 7, 2025.

7https://doc.rust-lang.org/reference/attributes/codegen.html#the-
target feature-attribute, last accessed on March 7, 2025.

8https://doc.rust-lang.org/stable/reference/inline-assembly.html, last
accessed on March 7, 2025.

is up to the programmer to ensure that there are no occurrences
of undefined behavior in a program, whether or not such
undefined behaviors are in unsafe blocks, outside them, or
due to the interaction between safe and unsafe code.

B. Erroneous Behavior

Rust gives a precise definition of unsafe operation: “those
that can potentially violate the memory-safety guarantees of
Rust’s static semantics” [21]. This implies that behaviors not
directly impacting such memory-safety guarantees are not
considered to be unsafe and, consequently, they do not trigger
compile-time errors by the Rust compiler. Nonetheless, there
are several behaviors that, while not being unsafe in that sense,
are typically considered erroneous. These are: deadlocks,
memory or resource leaks, exiting without calling destructors,
exposing randomized base addresses through pointer leaks,
integer overflows, logic errors.9

C. Implementation-Defined Behavior

While the expression “implementation-defined behavior”
does not occur in the Rust literature, the entire language is
implementation-defined, meaning that there exists basically
only one implementation of the language, in the form of
the rustc compiler. Indeed, Rust changed considerably over
the years, and it keeps changing with a new release every
six weeks. This is a problem, as functional safety standards
such as ISO 26262 prescribe the use of safe subsets of
standardized programming languages used with qualifiable
translation toolchains (see, e.g., ISO 26262 Part 8 and RTCA
DO-330). In fact,one of the key challenges in adopting Rust
for functional safety applications lies in the rapid pace of its
evolution and the monopoly of its implementation. While Rust
boasts a strong ownership model that prevents entire classes
of memory safety vulnerabilities, it diverges significantly from
the principles of standardized and stable languages as required
by all functional safety standards.

Unlike C and C++, which have well-established ISO stan-
dards, currently there is no formal specification that defines the
language independently of its implementation, meaning that
the behavior of Rust is effectively dictated by the decisions
made in rustc’s development. Even Ferrocene, a qualified
Rust compiler toolchain, is based on a specific version of the
rustc compiler with accompanying documentation, additional
tests, and a language specification that is supposed to corre-
spond to the language implemented by that specific version
of the rustc compiler. This lack of an independent and truly
stable specification raises concerns in safety-critical domains,
where predictability and determinism are paramount.

Rust follows a six-week release cycle, introducing frequent
changes and new features that can alter the behavior of
previously compiled code. While Rust guarantees backward
compatibility for stable features, this rapid iteration presents
significant challenges for long-term maintenance, regression
testing, and certification:

9https://doc.rust-lang.org/stable/reference/behavior-not-considered-
unsafe.html, last accessed on March 7, 2025.

https://doc.rust-lang.org/reference/expressions.html#place-expressions-and-value-expressions
https://doc.rust-lang.org/reference/expressions.html#place-expressions-and-value-expressions
https://doc.rust-lang.org/beta/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/beta/nightly-rustc/rustc_middle/mir/struct.Place.html
https://doc.rust-lang.org/stable/std/primitive.pointer.html
https://doc.rust-lang.org/reference/attributes/codegen.html#the-target_feature-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-target_feature-attribute
https://doc.rust-lang.org/stable/reference/inline-assembly.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html

• Functional safety projects require long lifecycles (often
spanning decades in automotive, aerospace and railways),
whereas Rust’s ecosystem is designed around continuous
evolution and breaking changes in unstable features.

• Toolchain qualification is an essential part of functional
safety compliance (e.g., ISO 26262 Part 8, RTCA DO-
330), requiring that compilers be stable, verifiable, and
free of unintended changes. Rust’s frequent updates make
it challenging to qualify the toolchain under such stan-
dards.

• Safety-critical software must be predictable, but rapid
updates increase the risk of toolchain-induced variability,
where seemingly minor compiler updates may affect
code generation, optimization strategies, or static analysis
results.

If Rust is to be adopted in safety-critical domains, steps
must be taken to align it with functional safety requirements,
such as:

1) Defining a stable, safety-focused subset of Rust that can
be used in long-term projects.

2) Establishing a formal Rust specification independent of
its implementation in rustc.

3) Providing long-term support (LTS) versions of Rust with
extended maintenance guarantees.

4) Developing methods to qualify Rust toolchains under the
prescriptions of functional safety standards.

Until these concerns are addressed, Rust’s rapid evolution
remains a barrier to its direct adoption in functional safety
domains, reinforcing the need for alternative, qualified ap-
proaches like MISRA C and C-rusted, which provide stable
and certifiable pathways to safer software development.

The next section is a first step toward addressing the first
of the above concerns.

IV. ELEMENTS FOR A RUST CODING STANDARD

As we have seen in previous sections, one of the things
that Rust misses, if it has to qualify as a stable foundation
for safety-critical applications, is a coding standard defining a
suitable safety-focused subset. Here we explore the possibility
of defining such a subset along the lines of MISRA C/C++,
that is, with a coding standard constituted by a set of coding
guidelines. Moreover, given that Rust has similarities with C
and C++, MISRA C and MISRA C++ are obvious candidates
as starting points for a Rust coding standard.

Since Rust is a complex, multi-paradigm programming
language with a lot of features, many aspects are at play
when looking at specific issues that may arise in a program.
This consideration would likely lead to the formulation of
guidelines more akin to those seen in MISRA C++:2023 [22],
rather than those in MISRA C:2025 [7]. On the other hand,
Rust can be interfaced with C++ only in a restricted set of
cases via third-party libraries such as bindgen.10 While one
could avoid using the STL and manually call constructors and

10https://rust-lang.github.io/rust-bindgen/cpp.html, last accessed on
March 7, 2025.

destructors, that approach does not scale well. In contrast,
the built-in FFI support for interfacing with C is much better
integrated into the language, and likely of greater importance
in embedded contexts: this is why, in this paper, we will
draw the elements for a possible Rust coding standard from
MISRA C:2025.

One of the most important decisions to be made when con-
sidering a coding standard for Rust is the treatment of unsafe
Rust: since unsafe Rust and the use of FFI are, as we have seen
before, key enablers to developing useful real-world software,
especially for embedded systems, their handling requires a lot
more care, as there are fewer correctness guarantees given by
the language. We will thus distinguish between guidelines that
are applicable only to unsafe Rust and the FFI from those that
are applicable to the entire Rust language.

In the next section we will discuss the use of guidelines
inspired by MISRA C:2025 for the prevention of undefined
and erroneous behavior, as well as the prevention of confusion
on the part of developers and code reviewer. We will then
present a synoptic table with a mapping of all MISRA C:2025
guidelines to Rust.

We will use different fonts to render the guideline category:
the identifiers of mandatory guidelines are written in boldface
(e.g., Rule 9.1), in italics if advisory (e.g., Dir 4.4), or in
normal font if required (e.g., Rule 5.3).

A. Coverage of Rust Undefined Behaviors

One of the main objectives of the MISRA C guidelines in
is the prevention of the many undefined or critical unspecified
behaviors of in C. Here we discuss how selected MISRA C
guidelines related to undefined behavior of C can be adapted to
avoid undefined behavior of Rust as recalled in Section III-A.
RUB-01 (Data race) Concurrent execution of different parts

of a program can lead to a data race. While Rust offers
some protection against data races thanks to its ownership
system, not all data races can be prevented by compile-
time checks, thus MISRA C guidelines dealing with such
aspects are partially applicable to safe Rust and fully
applicable to unsafe blocks.

RUB-02 (Illegal memory access) This can arise either from
incorrect manipulation of misaligned pointers or from
dereferencing dangling pointers, which is particularly
relevant when interfacing with C code via FFI. For both
cases, MISRA C guidelines are applicable.

RUB-03 (In-bounds pointer arithmetic violation)
Violating the rules of in-bounds pointer arithmetic
can happen when dealing with unsafe functions or
methods that directly manipulate pointers, such as
pointer::offset. Therefore, most of the rules from
MISRA C Series 18 dealing with pointers are applicable
to unsafe Rust.

RUB-04 (Breaking the pointer aliasing rules) Rust and C
have different viewpoints with respect to aliasing. In
particular, in C aliasing is seen as an opt-out feature
via the restrict qualifier, while in Rust aliasing can
be realized via UnsafeCell<U> via the pattern known

www.embedded-world.eu

https://rust-lang.github.io/rust-bindgen/cpp.html

as interior mutability. As a result, while MISRA C
discourages the use of restrict (Rule 8.14), there is no
rule other than Rule 1.3 (There shall be no occurrence of
undefined or critical unspecified behaviour) that directly
addresses RUB.04, therefore a coding standard for Rust
will need to consider this aspect.

RUB-05 (Mutating immutable bytes) While Rust’s borrow
checker and immutability by default greatly help in
reducing the likelihood of this undefined behavior, care
must still be taken when interfacing with C code that may
implicitly require the pointed to data not to be modified
despite the lack of constness. It is also possible in Rust
to convert from a const pointer to a mut pointer, thereby
allowing such behavior to take place.

RUB-06 (Undefined behavior via compiler intrinsics) As
compiler intrinsics are language extensions, prevention
corresponds to the enforcement of guidelines similar to
MISRA C Dir 1.2.

RUB-07 (Depending on unsupported platform features)
Features only available on certain platforms are an
implementation-defined aspect, therefore their prevention
corresponds to the enforcement of MISRA C Dir 1.1.

RUB-08 (Wrong ABI) Determining which ABI should be
used when calling a function defined in foreign code
is an implementation-defined aspect, therefore enforcing
MISRA C Dir 1.1 ensures that appropriate measures are
taken to avoid this behavior.

RUB-09 (Producing an invalid value) While MISRA C
Rule 1.1 explicitly mentions the syntax and constraints of
the C language, therefore making the rule still applicable
to Rust when interfacing with C code, an equivalent
guideline can be useful for safe Rust, as invalid values
can be produced.

RUB-10 (Incorrect use of inline assembly) Usage of inline
assembly is regulated by MISRA C directives prescribing
proper encapsulation and documentation, as the exact
constraints are an implementation-defined aspect. These
directives are equally valid for Rust.

RUB-11 (Invalid pointer reinterpretation) Rules like those
of Series 11 of MISRA C, such as Rule 11.4 (A con-
version should not be performed between a pointer to
object and an integer type), can be used to prevent
most instances of invalid pointer reinterpretation. For the
remaining instances, the use of unions can be limited via
the enforcement of guidelines like MISRA C Rule 19.2
(The union keyword should not be used) and Rule 19.3
(A union member shall not be read unless it has been
previously set).

B. Coverage of Rust Erroneous Behaviors

Many of the Rust erroneous behaviors recalled in Sec-
tion III-B may arise in C programs as well and can be miti-
gated by slight adaptations of existing MISRA C guidelines.

1) Deadlocks: MISRA C addresses deadlocks through
Dir 5.2 (There shall be no deadlocks between threads). Being
a directive, compliance is not just a matter of modifying the

code to being compliant, but also promotes establishing proper
documentation that outlines strategies to prevent deadlocks
(e.g., a global ordering of resources). These strategies can then
be validated with the help of a static analysis tool.

2) Memory and resource leaks: Resource leaks are cov-
ered by Dir 4.13 (Functions which are designed to provide
operations on a resource should be called in an appropriate se-
quence). In Rust this also requires that destructors are correctly
implemented and triggered. Additionally, Dir 4.12 (Dynamic
memory allocation shall not be used) and Rule 21.3 (The mem-
ory allocation and deallocation functions of <stdlib.h> shall
not be used) discourages the use of manual heap management.

3) Exiting without calling destructors: Not triggering de-
structors is a potential cause of resource leaks and thus this
case is also partially covered by Dir 4.13.

4) Integer overflows: This is addressed by MISRA C
under Dir 4.1 (Run-time failures shall be minimized). Rust
provides some built-in protections through debug assertions in
non-optimized builds11, but explicit enforcement of overflow
handling remains the responsibility of the programmer.

5) Logic errors: While Dir 4.1 also partially addresses
logic errors by requiring run-time failures to be minimized,
general logical correctness is beyond what MISRA C and the
Rust compiler can enforce. For instance, as noted by the Rust
Reference,12 inappropriate trait implementations can introduce
erroneous or unpredictable behavior.

6) Exposing randomized base addresses through pointer
leaks: Exposing randomized addresses is not covered by any
MISRA C guideline, though Rule 11.4 (A conversion should
not be performed between a pointer to object and an integer
type) prevents some instances of pointer reinterpretation that
could lead to such situations.

C. Applicability of the MISRA C Essential Type System

The Essential Type System of MISRA C addresses the
pitfalls and dark corners of C’s rather weak type system,
whereby implicit conversions can easily fool developers and
reviewers.

Rust possesses a much stronger type system, inspired by
those of functional and object-oriented programming lan-
guages, which mitigates by default many of the issues that
the MISRA C guidelines based on the essential type system
aim to address. More specifically, conversions in Rust can
either occur explicitly (via the as operator and the unsafe
std::mem::transmute function) or implicitly via coercions,
which are a set of rules that apply at specific coercion sites,13

and do not relate with MISRA C essential types.
In general, Rust’s type system imposes strict constraints

on the allowed explicit conversions and specifies what kind

11https://doc.rust-lang.org/stable/reference/expressions/operator-
expr.html#overflow, last accessed on March 7, 2025.

12https://doc.rust-lang.org/reference/behavior-not-considered-unsafe.html#
logic-errors, last accessed on March 7, 2025.

13https://doc.rust-lang.org/stable/reference/type-coercions.html#coercion-
sites, last accessed on March 7, 2025.

https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#overflow
https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#overflow
https://doc.rust-lang.org/reference/behavior-not-considered-unsafe.html#logic-errors
https://doc.rust-lang.org/reference/behavior-not-considered-unsafe.html#logic-errors
https://doc.rust-lang.org/stable/reference/type-coercions.html#coercion-sites
https://doc.rust-lang.org/stable/reference/type-coercions.html#coercion-sites

1 // compile error: cannot add `u32` to `i32`
2 let _ = 1i32 + 3u32;
3

4 // Rule 10.5 violation
5 assert_eq!(-1i8 as u8, 255u8);
6 assert_eq!(1234u16 as u8, 210u8);
7 assert_eq!(42.9f32 as i32, 42);
8

9 // Rule 10.5 violation
10 let c: char = unsafe {
11 std::mem::transmute(u32::MAX)
12 };
13

14 #[repr(u8)]
15 enum Enum { A, B }
16

17 // Rule 10.5 violation (leads to UB)
18 let e: Enum = unsafe {
19 std::mem::transmute(5u8)
20 };

Fig. 5: Explicit conversions between arithmetic types that can
lead to unexpected or undefined behavior

of transformations are applied to the values.14 This avoids
many pitfalls addressed by the MISRA C rules in Series 10.
However, the allowed explicit conversions are subject to
possibly erroneous manipulations (e.g., unintended trunca-
tion and casting invalid Unicode scalar values15, that is,
integer values outside the ranges [0x0000, 0xD7FF] and
[0xE000, 0x10FFFF] to char), and thus other some of
the rules in that series are applicable to Rust. For example,
Rule 10.5 (The value of an expression should not be cast
to an inappropriate essential type) and Rule 10.8 (The value
of a composite expression shall not be cast to a different
essential type category or a wider essential type) are ap-
plicable to the allowed as conversions and to the unsafe
std::mem::transmute since they could lead to unexpected
or undefined behavior: a few representative situations are
shown in Figure 5.

D. Coverage of Developer Confusion

Rust’s strong type system, combined with its syntax and
semantics, provide protection against some common program-
ming patterns that often lead to developer confusion in C.
However, many aspects enforced by the MISRA guidelines
remain relevant to Rust.

Rust supports nested block comments, which mitigates some
of the risks associated with comment misuse in C. However,
guidelines such as Dir 4.4 (Sections of code should not be
”commented out”) and Rule 3.1 (The character sequences /*
and // shall not be used within a comment) remain relevant.
In fact, misplaced or improperly nested comments may still
lead to unintended code inclusion or exclusion in Rust, which
these rules will prevent.

14https://doc.rust-lang.org/reference/expressions/operator-expr.html#type-
cast-expressions, last accessed on March 7, 2025.

15https://www.unicode.org/glossary/#unicode scalar value, last accessed
on March 7, 2025.

Typographical issues remain a potential source of confusion,
particularly when identifiers and literals appear similar: Dir 4.5
(Identifiers in the same name space with overlapping visibil-
ity should be typographically unambiguous) helps mitigating
these risks by enforcing a clear distinction between identifiers.

A related concern is shadowing, where an identifier is
redefined within the same or an inner block, which makes the
outer definition not referenceable. This can lead to developer
confusion because someone may write code in an inner block
on the assumption that the outer definition is being used, likely
leading to the introduction of subtle defects. As Rust is subject
to the same issue, Rule 5.3 is clearly applicable (An identifier
declared in an inner scope shall not hide an identifier declared
in an outer scope).

Rust implements floating-point arithmetic according to the
IEEE-754 standard [23], thus guidelines concerning floating-
point arithmetic such as Dir 4.15 (Evaluation of floating-
point expressions shall not lead to the undetected generation
of infinities and NaNs) can be applied to Rust, thereby
reducing chances of errors and loss of precision in numerical
computations.

Another area of concern is the management of resources.
Many Rust APIs use the type system to enforce proper
sequencing of resource allocations and deallocations via the
RAII idiom. Dir 4.13 (Functions which are designed to provide
operations on a resource should be called in an appropriate
sequence) is still applicable, since it is possible to use unsafe
functions (via the core crate or FFI) or omitting some calls to
destructors; in combination with the RAII idiom, these may
cause missed deallocations. Moreover, Dir 4.13 regards all
sorts of operations on all kinds of resources, including those
that, being completely user-defined, cannot be controlled by
the Rust compiler. Additionally, many MISRA C guidelines
from Series 21 and 22, concerning standard libraries and
resources, respectively, are directly applicable in the context
of Rust’s FFI capabilities.

Macros are also a source of potential confusion. While Rust
possesses a more structured macro system compared to C,
many aspects covered by the MISRA rules remain open. For
example Dir 4.9 (A function should be used in preference
to a function-like macro where they are interchangeable)
discourages the use of function-like macros because they do
not perform type checks, they could potentially have multiple
side effects, unnecessary multiple expression evaluation and
debugging intricacies. Similar to C, the behavior of macros is
also context-dependent despite their “partial hygiene” [24].

Rust provides lints to detect unused or unreachable code
(e.g. the dead_code and unused_must_use) but these are
not strictly enforced by the language. MISRA rules addressing
dead code (Rule 2.2), error handling (Dir 4.7), and function
return value usage (Rule 17.7) are all fully applicable to safe
and unsafe Rust.

Finally, several MISRA C naming rules concerning dec-
larations and pointer qualifiers, particularly those concerning
external linkage and FFI interactions, are applicable to Rust
with only minor changes to align them with Rust’s semantics

www.embedded-world.eu

https://doc.rust-lang.org/reference/expressions/operator-expr.html#type-cast-expressions
https://doc.rust-lang.org/reference/expressions/operator-expr.html#type-cast-expressions
https://www.unicode.org/glossary/#unicode_scalar_value

while preserving their original intent: an example is Rule 8.7
(Functions and objects should not be defined with external
linkage if they are referenced in only one translation unit).

E. A Mapping of MISRA C:2025 Guidelines to Rust

This section summarizes the work done at BUGSENG and
in the MISRA C Working Group on the applicability of the
MISRA C:2025 guidelines [7] to Rust. Work on this mapping
started independently at BUGSENG in mid 2024 as part of
the work on C-rusted [4], [5]. At the beginning of 2025 forces
were joined with the MISRA C Working Group, which has been
conducting parallel work along the same lines. This joint work
culminated in the publication of MISRA C:2025 Addendum 6
[25] and of the tables presented in this section, namely: Table I,
for the mapping itself, and Table II, for some statistics on the
mapping.

All efforts were made to avoid contradiction in the material
that is common between Table I and [25]. Nonetheless, the
reader should take into account that:

1) The additional fields and the different notes in Table I
are intentional and reflect the needs of this paper and the
personal views of its authors.

2) The official version of the mapping is the one given in
MISRA C:2025 Addendum 6 [25] and not the one given
in the present paper.

Table I has the following columns:
Guideline: The MISRA C guideline identifier.
Rationale A summary of the rationale for the MISRA C

guideline. While for the official text we refer the reader
to MISRA C:2025 Addendum 6 [25], here is a concise
summary of the meaning of the acronyms used in the
table:
UB: The MISRA C guideline aims to prevent the in-

surgence of one or more C Undefined or Unspecified
Behaviors.

IDB: The MISRA C guideline is concerned with one or
more C Implementation-Defined Behaviors.

CQ: The MISRA C guideline is concerned with Code
Quality [26].

DC: The MISRA C guideline aims at preventing possible
Developer Confusion.

Many guidelines have multiple rationales: this is a con-
sequence of MISRA intent of maintaining a reasonable
number of guidelines that are as simple as possible.

Applicability: A guideline might be either fully applicable
to Rust (y), partly applicable (p) if only part of the
rationale for the MISRA C guideline is applicable to
Rust, or not applicable (n). Furthermore, the applicability
field may differ between safe and unsafe Rust due to
the fact that many guarantees about memory safety that
are enforced in the safe subset of Rust are under the
programmer’s responsibility in unsafe blocks. Given that
uses of the C FFI must be made inside an unsafe block,
and many MISRA C guidelines are directed at preventing
misuse of C Standard Library functions, the applicability

classification has been conceived by taking into account
the use of those functions via FFI.

Rust UB: This column contains the Rust undefined behav-
iors, as described in Section III-A, which application
of the MISRA C guideline helps preventing. Note that
Rule 1.3 (There shall be no occurrence of undefined
or critical unspecified behaviour) is interpreted, as in
MISRA C, as a catch-all rule that encompasses all
undefined or critical unspecified behaviors not explicitly
mentioned in other guidelines. As such, it has been
mapped to all Rust UBs.

Notes: These are similar in spirit, but often more detailed
than than the Comment given in MISRA C:2025 Adden-
dum 6, and their main purpose is to explain the reasoning
behind the classification of a guideline as applicable, not
applicable or partially applicable to Rust. While some of
these notes might deserve a more comprehensive expla-
nation, we strove to find a balance between conciseness,
completeness, and understandability.

V. C-RUSTED AND MISRA C

There are important synergies between C-rusted and
MISRA C. On the one hand, to deliver its own guarantees
C-rusted partly relies on some of the guarantees provided by
MISRA C, such as the absence of pointer conversions whose
behavior is not fully defined. On the other hand, the safety
guarantees provided by C-rusted result in compliance with,
or justified deviation from, important — and, in some cases,
challenging — MISRA C guidelines.

Before going into these topics, note that C-rusted, like
Rust, has unsafe blocks: this is a portion of code for which
correctness is under the programmer responsibility and upon
which the C-rusted Analyzer is not required to give any
warnings. Nonetheless, as C-rusted code is entirely within
standard ISO C, code in unsafe blocks can and should be
checked for MISRA compliance.

A. C-rusted for MISRA C

1) Dynamic Memory Allocation: Use of dynamic memory
allocation (however implemented) is discouraged by MISRA C
Dir 4.12, while memory allocation and deallocation functions
of <stdlib.h> are explicitly targeted by Rule 21.3. Projects
that deviate those in order to use dynamic memory allocation
from <stdlib.h> are still subject to Rule 22.1 (All resources
obtained dynamically by means of Standard Library functions
shall be explicitly released) and Rule 22.2 (A block of memory
shall only be freed if it was allocated by means of a Standard
Library function).

(continued after Tables I and II)

TABLE I: Applicability of MISRA C:2025 Guidelines to Rust

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Dir 1.1 IDB y y
RUB-07
RUB-08
RUB-10

As noted in section III-C, given the absence of a full
specification and a single main implementation of the
language, a lot of aspects are implementation-defined.

Dir 1.2 IDB y y RUB-06 Any usage of experimental or unstable features via the
#[target_feature(...)] macro should be documented, as
well as compiler intrinsics.

Dir 2.1 UB, CQ, DC y y
Dir 3.1 CQ y y Requirements traceability tools for Rust are not as mature as

those for C.
Dir 4.1 UB, CQ y y RUB-01 Run-time failures in Rust are often in the form of panics.
Dir 4.2 IDB, CQ y n RUB-10
Dir 4.3 DC, CQ y n RUB-10
Dir 4.4 DC y y The #[cfg(...)] attribute allows for conditional

compilation, as a counterpart to C preprocessor directives
#if and #ifdef .

Dir 4.5 DC y y
Dir 4.6 DC n n Primitive types already fulfill this requirement.
Dir 4.7 DC y y Recoverable errors in Rust should use the Option, Result

types.
Dir 4.8 DC n n Robust encapsulation and information hiding in Rust is

accomplished via the module system.
Dir 4.9 DC, CQ y y Many of the considerations for C macros are true for both

forms of Rust macros, and especially for procedural macros
[24].

Dir 4.10 UB, DC n n Rust does not have header files.
Dir 4.11 UB, IDB y y This directive applies to all libraries.
Dir 4.12 UB, CQ y y
Dir 4.13 UB, DC y y Many APIs from the Rust Standard Library use the type

system to enforce ordering; nevertheless, this applies to all
libraries.

continued on next page

www.embedded-world.eu

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Dir 4.14 UB, CQ y y
Dir 4.15 UB, IDB, DC y y Rust implements IEEE-754 [23].
Dir 5.1 UB y p RUB-01 Not all safe Rust types are race-free. A notable exceptions is

std::rc::Rc. See section Send and Sync of the
Rustonomicon [27].

Dir 5.2 UB y y In section IV-B an overview of the issues and remediations
against deadlock in Rust is given.

Dir 5.3 UB, DC y y
Rule 1.1 UB, IDB y p RUB-09 See the discussion at III-C.

Rule 1.3 UB, IDB y y

RUB-01
RUB-02
RUB-03
RUB-04
RUB-05
RUB-06
RUB-07
RUB-08
RUB-09
RUB-10
RUB-11

Rust has a list of behaviors considered undefined, but any
occurrence of Undefined Behavior not covered by other rules
is covered by this one.

Rule 1.4 UB, DC n n Specific to C versioning.
Rule 1.5 UB, IDB, DC y y Applies to deprecated APIs, marked with the

#[deprecated(...)] attribute.
Rule 2.1 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect unused code.
Rule 2.2 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect dead code.
Rule 2.3 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect unused code.
Rule 2.4 DC n n Rust does not have a separate tag name space, unlike C,

therefore this guideline does not apply to Rust.
Rule 2.5 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect unused code.
Rule 2.6 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect unused code.
Rule 2.7 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect unused code.
Rule 2.8 DC y y The rustc compiler and other standard Rust tooling have

partial support to detect unused code.
Rule 3.1 DC y y Nested block comments are fully supported, but mixing them

with line comments might still be a source of developer
confusion.

Rule 3.2 DC n n Rust does not have line splicing.
Rule 4.1 DC, IDB n n
Rule 4.2 DC n n Rust does not have trigraphs.
Rule 5.1 UB, IDB, DC y p Rust does not impose limits on the number of significant

characters, except in extern "C" blocks, but long identifiers
harm readability.

Rule 5.2 UB, IDB, CQ y y Rust does not impose limits on the number of significant
characters, except in extern "C" blocks, but long identifiers
harm readability.

Rule 5.3 DC y y In Rust, the rule should also apply to macro identifiers.
Rule 5.4 UB, IDB, DC n n Can be handled by extending Rule 5.3 to also encompass

macro identifiers.
Rule 5.5 UB, IDB, DC p p In Rust macros and functions use different syntax, but it is

still good practice to avoid reusing the same identifier.

continued on next page

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Rule 5.6 DC y y The Rust module system makes name conflicts less likely, but
this can still be applied to type aliases.

Rule 5.7 UB, DC n n Rust does not have a separate tag name space.
Rule 5.8 DC y y While the Rust module system makes name conflicts less

likely, applying the rule still helps avoid confusion.
Rule 5.9 DC y y
Rule 5.10 UB, DC y p Applicable when interfacing with C. Weak keywords can be

used as identifiers, but they are discouraged.
Rule 6.1 UB, IDB n n Bit-fields are not part of the language and only provided by

external libraries.
Rule 6.2 DC n n Bit-fields are not part of the language and only provided by

external libraries.
Rule 6.3 IDB n n Bit-fields are not part of the language and only provided by

external libraries.
Rule 7.1 DC y y Rust octals have a distinct prefix from decimals.
Rule 7.2 DC y y This is not a suffix allowed by default but can be enabled.

Note that standard Rust numeric literals can have suffixes
indicating size and signedness.

Rule 7.3 DC n n Dealt with by standard Rust suffixes with explicit size.
Rule 7.4 UB n n Rust string literals have immutable type &str.
Rule 7.5 UB n n Rust does not have these type of macros, because numeric

literals can have appropriate suffixes.
Rule 7.6 DC n n Rust does not have these types of macros, because numeric

literals can have appropriate suffixes.
Rule 8.1 DC n n Rust promotes type inference, but has no dangerous implicit

conversions.
Rule 8.2 UB, DC n n Rust syntax avoids the issue.
Rule 8.3 UB, DC y n An extern "C" declaration shall have a type compatible

with the C declaration.
Rule 8.4 UB n n
Rule 8.5 DC y n May affect extern "C" declarations.
Rule 8.6 UB y n May affect extern "C" declarations.
Rule 8.7 DC y y Rust handles visibility of data types and functions via its

module system; using pub on items referenced in only one
module should be avoided.

Rule 8.8 DC n n
Rule 8.9 DC y y
Rule 8.10 UB, DC n n Rust syntax avoids the issue.
Rule 8.11 DC n n Rust syntax requires array sizes to be known at compile time,

while slices have a size that can be queried at runtime.
Rule 8.12 DC n n
Rule 8.13 DC y y mut should be avoided unless necessary.
Rule 8.14 UB n n Rust has no equivalent to the restrict qualifier in C.
Rule 8.15 UB y n RUB-02 May affect extern "C" declarations.
Rule 8.16 DC n n Zero-sized types have implicitly alignment 0, but the attribute

cannot be explicitly specified.
Rule 8.17 DC p p Rust has attributes to specify the aligment of a type, rather

than individual objects, therefore the rule is partially
applicable. The attribute syntax allows multiple alignment
attributes on a type.

continued on next page

www.embedded-world.eu

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Rule 8.18 UB, DC n n
Rule 8.19 UB, DC n n
Rule 9.1 UB y y For safe Rust, this is prevented by the compiler, but it is still

applicable; for unsafe it can be possible to access
uninitialized data.

Rule 9.2 UB, CQ, DC n n Rust syntax avoids the issue.
Rule 9.3 UB n n Rust syntax avoids the issue.
Rule 9.4 DC y y The constraint is enforced by the compiler, but it is still

applicable.
Rule 9.5 IDB, DC n n Rust does not have designated initializers.
Rule 9.6 DC n n Rust does not have chained designators.
Rule 9.7 UB y n RUB-01 Can cause Undefined Behavior when interfacing with C,
Rule 10.1 UB, IDB, DC n n See the discussion at section IV-C.
Rule 10.2 DC n n See the discussion at section IV-C.
Rule 10.3 UB, IDB n n See the discussion at section IV-C.
Rule 10.4 IDB n n See the discussion at section IV-C.
Rule 10.5 DC y p See the discussion at section IV-C.
Rule 10.6 DC n n See the discussion at section IV-C.
Rule 10.7 DC n n See the discussion at section IV-C.
Rule 10.8 DC y p See the discussion at section IV-C.
Rule 11.1 UB, IDB y p Converting a function pointer to a raw pointer is safe via the

as operation, but there exists also the unsafe
std::mem::transmute.

Rule 11.2 UB y n RUB-02 Relevant when interfacing with C code, as well as
transmuting pointers to traits, generics or enums.

Rule 11.3 UB y y RUB-02 In general, when converting between pointers in Rust extreme
care must be taken.

Rule 11.4 UB, IDB y y RUB-02 In general, when converting between pointers and addresses
in Rust extreme care must be taken.

Rule 11.5 UB y n RUB-02 Relevant when interfacing with C code.
Rule 11.6 UB, IDB y n Relevant when interfacing with C code.
Rule 11.8 UB y p RUB-05 Rust does not have the _Atomic or volatile qualifiers, but

a const raw pointer can be converted to a mut pointer.
Rule 11.9 DC n n Rust does not have a null pointer constant, though there are

ways to obtain pointers with address 0.
Rule 11.10 UB n n
Rule 11.11 DC y y This constraint is enforced by the compiler as it results in a

type error, but nevertheless the constraint is applicable.
Rule 12.1 DC y y Lower priority, can be subjected to recategorization.
Rule 12.2 UB, DC y p The behavior in Rust is fully defined. Depending on how the

code is compiled, if overflow occurs at runtime it can either
call panic or wrap around according to two’s complement
semantics.

Rule 12.3 DC n n Rust does not have a comma operator.
Rule 12.4 DC y n Rust by default does not allow constant expressions to wrap

around, but even if the default behavior is changed via
#[allow(arithmetic_overflow)] , the resulting operation
is still defined.

continued on next page

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Rule 12.5 DC n n
Rule 12.6 UB n n
Rule 13.1 UB y y
Rule 13.2 UB n n Rust has a stricter order of evaluation than C, which prevents

the issue.
Rule 13.3 UB, DC n n Rust does not have unary increment or decrement operators.
Rule 13.4 UB, DC n n In Rust the return value of the assignment operator has type

unit, therefore its result cannot be used inside an arithmetic
expression. Addiditonaly, the order of evaluation is strict in
Rust.

Rule 13.5 DC y y
Rule 13.6 UB, DC n n Rust has mem::size_of for statically sized types and

mem::sizeof_val for dyamically sized types, therefore the
operator is not applied to expressions, but rather to types.

Rule 14.1 DC y p Only applicable to while loops. In general Rust promotes the
use of iterators for determinate iteration (e.g., for ... in).

Rule 14.2 DC n n Rust has the for ... in construct for determinate iteration.
Rule 14.3 DC y y
Rule 14.4 DC y y The compiler enforces this constraint; nevertheless, the

constraint is applicable.
Rule 15.1 DC n n Rust does not have goto statements.
Rule 15.2 DC n n Rust does not have goto statements.
Rule 15.3 DC n n Rust does not have goto statements.
Rule 15.4 DC y y Only the part concerning the break statement is applicable,

but the rationale is still fully applicable.
Rule 15.5 DC y y Disapplied in MISRA C:2025, but the rationale is still valid.
Rule 15.6 DC n n Rust does not allow non-compound expressions in this

context.
Rule 15.7 DC y y
Rule 16.1 DC n n Rust match expression has a stricter syntax and enforces a lot

of the constraints.
Rule 16.2 DC n n Rust match expression has a stricter syntax and enforces a lot

of the constraints.
Rule 16.3 DC n n Rust match expression has a stricter syntax and enforces a lot

of the constraints.
Rule 16.4 DC n n Enforced by match constraints.
Rule 16.5 DC n n A catch-all pattern causes subsequent patterns to be

unreachable and diagnosed as such.
Rule 16.6 DC n n Rust match expression has a stricter syntax and enforces a lot

of the constraints.
Rule 16.7 DC n n Rust match expression has a stricter syntax and enforces a lot

of the constraints.
Rule 17.1 UB n n Rust match expression has a stricter syntax and enforces a lot

of the constraints.
Rule 17.2 UB, DC y y
Rule 17.3 UB n n
Rule 17.4 UB n n Rust allows to return values without using the return

keyword, and the corresponding condition is enforced by the
compiler.

continued on next page

www.embedded-world.eu

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Rule 17.5 UB, DC n n
Rule 17.7 DC y y must_use can help indicate where this is important, but does

not affect applicability.
Rule 17.8 DC y y Parameters are not modifiable by default, unless declared mut,

but nothing prevents this to be done.
Rule 17.9 UB y n Rust expresses divergence with a separate type, the ! (Never)

type.
Rule 17.10 DC n n Condensed into the semantics of the ! (Never) type.
Rule 17.11 DC y y Rust does not enforce a diverging function to have the !

(Never) type, therefore the rule is applicable.
Rule 17.12 DC n n
Rule 17.13 UB n n Rust syntax prevents a function type to have qualifiers.
Rule 18.1 UB y n RUB-03 Using unsafe, a pointer beyond the bounds of an array can

be obtained and dereferenced,
Rule 18.2 UB y n RUB-03 Subtracting pointers belonging to different arrays can be done

in unsafe blocks.
Rule 18.3 UB y y RUB-03 Rust raw pointers implement the PartialOrd trait, therefore

they can be operands to the comparison operators.
Rule 18.4 DC y n RUB-03 Applies to use of the unsafe API.
Rule 18.5 DC y y
Rule 18.6 UB y n RUB-02 In unsafe Rust dangling pointers are a concern of the

developer.
Rule 18.7 UB, DC n n Rust does not have flexible array members.
Rule 18.8 UB, DC n n Rust does not have VLAs.
Rule 18.9 UB n n Rust does not have the concept of temporary lifetime.
Rule 18.10 UB n n Rust does not have VLAs.
Rule 19.1 UB y n Only possible in unsafe code.
Rule 19.2 UB, DC y y In Rust a union can be read only in unsafe blocks, but can

be written in safe blocks.
Rule 19.3 UB y y RUB-09 Applicable to both safe and unsafe due to the fact that writing

to a union is safe, while reading from it must be placed
inside an unsafe block, therefore the constraint is only for
unsafe blocks, but checking that the rule is complied with
will involve both safe and unsafe code.

Rule 20.1 UB n n Rule specific to the C preprocessor.
Rule 20.2 UB n n Rule specific to the C preprocessor.
Rule 20.3 UB n n Rule specific to the C preprocessor.
Rule 20.4 UB p p Raw identifiers can allow to use certain reserved keywords as

identifiers (weak keywords), but the visual marker r# makes
this explicit.

Rule 20.5 DC n n Rule specific to the C preprocessor.
Rule 20.6 UB n n Rule specific to the C preprocessor.
Rule 20.7 DC p p Only applicable to procedural macros: macros introduced by

macro_rules do not have this issue.
Rule 20.8 DC n n Rule specific to the C preprocessor.
Rule 20.9 DC n n Rule specific to the C preprocessor.
Rule 20.10 UB n n Rule specific to the C preprocessor.
Rule 20.11 UB n n Rule specific to the C preprocessor.
Rule 20.12 DC n n Rule specific to the C preprocessor.

continued on next page

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Rule 20.13 DC n n Rule specific to the C preprocessor.
Rule 20.14 DC n n Rule specific to the C preprocessor.
Rule 20.15 UB n n Rule specific to the C preprocessor.
Rule 21.3 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.4 UB y n only accessible through unsafe extern "C".
Rule 21.5 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.6 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.7 UB y n Only accessible through unsafe extern "C".
Rule 21.8 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.9 UB y n Only accessible through unsafe extern "C".
Rule 21.10 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.11 UB n n As this is handled with macros in C, this is not accessible

from Rust via the FFI.
Rule 21.12 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.13 UB y n Only accessible through unsafe extern "C".
Rule 21.14 DC y n Only accessible through unsafe extern "C".
Rule 21.15 DC y n Only accessible through unsafe extern "C".
Rule 21.16 UB y n Only accessible through unsafe extern "C".
Rule 21.17 UB y n Only accessible through unsafe extern "C".
Rule 21.18 UB y n Only accessible through unsafe extern "C".
Rule 21.19 UB y n Only accessible through unsafe extern "C".
Rule 21.20 IDB, DC y n Only accessible through unsafe extern "C".
Rule 21.21 UB, IDB y n Only accessible through unsafe extern "C".
Rule 21.22 UB n n As this is handled with macros in C, this is not accessible

from Rust via the FFI.
Rule 21.23 DC n n As this is handled with macros in C, this is not accessible

from Rust via the FFI.
Rule 21.24 CQ y n Only accessible through unsafe extern "C".
Rule 21.25 UB y y Rust has the std::sync::atomic::Ordering enum with

the SeqCst variant, and its atomic operations model heavily
borrows from that of C++20 atomics.

Rule 21.26 UB y n Only accessible through unsafe extern "C".
Rule 22.1 UB, CQ y n Applies to resources acquired through FFI only.
Rule 22.2 UB y n Only accessible through unsafe extern "C".
Rule 22.3 UB, IDB y n Only accessible through unsafe extern "C".
Rule 22.4 UB y n Only accessible through unsafe extern "C".
Rule 22.5 IDB y n Only accessible through unsafe extern "C".
Rule 22.6 UB y n Only accessible through unsafe extern "C".
Rule 22.7 DC y n Only accessible through unsafe extern "C".
Rule 22.8 DC y n Only accessible through unsafe extern "C".
Rule 22.9 DC y n Only accessible through unsafe extern "C".
Rule 22.10 DC y n Only accessible through unsafe extern "C".
Rule 22.11 UB y p Rust has std::thread::spawn to create threads; it returns

an owned JoinHandle that can be used to join the thread. If
the join handle is dropped, the thread is implicitly detached,
which leads to a resource leak. Rust ownership rules prevent
a thread to be joined more than once, but unsafe code should
be careful not violate the rule.

continued on next page

www.embedded-world.eu

continued from previous page

Guideline Rationale Applicability Rust UB Notes
unsafe/FFI safe

Rule 22.12 UB y n Only accessible through unsafe extern "C".
Rule 22.13 UB, DC y y RUB-02
Rule 22.14 UB y p Rust thread synchronization primitives cannot be used while

uninitialized, but it is still a good practice to create them
before creating the threads that use them.

Rule 22.15 UB y p Rust does not have explicit thread synchronization objects
destruction APIs, but it is stil possible to cause a panic if they
are misused.

Rule 22.16 UB y n Only accessible through unsafe extern "C".
Rule 22.17 UB y n Only accessible through unsafe extern "C".
Rule 22.18 UB y y Rust does not specify the behaviour of a non-recursive Mutex

after calling the lock() method while holding the lock. The
only guarantee is that the call will not return (either panic or
deadlock is possible).

Rule 22.19 UB y y RUB-05 Rust has the CondVar type. Associating different mutexes to
the same condition variable may cause a panic in the wait()

method.
Rule 22.20 UB y p Rust has the std::thread::LocalKey type and the

thread_local! macro. While there is no undefined
behaviour tied to accessing the value before it has been set,
the APIs for the use of thread-local storage are subjected to
panics upon several conditions, which is generally undesirable.

Rule 23.1 DC n n Generic selections are a C-specific feature. Rust has generics
and traits that form a much wider and complex area of the
language, whose issues are best addressed by Rust-specific
guidelines.

Rule 23.2 DC n n See the note on Rule 23.1.
Rule 23.3 DC n n See the note on Rule 23.1.
Rule 23.4 DC n n See the note on Rule 23.1.
Rule 23.5 DC n n See the note on Rule 23.1.
Rule 23.6 DC n n See the note on Rule 23.1.
Rule 23.7 DC n n See the note on Rule 23.1.
Rule 23.8 DC n n See the note on Rule 23.1.

TABLE II: MISRA C:2025-to-Rust mapping summary

Applicability unsafe/FFI safe

yes 125 61
partial 4 18
no 94 144

Total 223 223

A program that sticks to the ownership model of C-rusted
has, by construction, guarantees about the absence of memory
leaks, double free, invalid free and use after free. This implies
compliance with Rule 22.1 and Rule 22.2, and it provides
a valid argument to deviate Dir 4.12 and Rule 21.3 for the
aspects related to memory management errors.16

2) Temporal Memory Safety: Temporal memory safety
is about accessing objects within their lifetimes. Dangling
pointers threaten memory safety, since they can be misused
to accessed objects after the expiration of their lifetimes.
MISRA C Rule 18.6 and Rule 18.9 are there to prevent this
from happening.

C-rusted defines different kinds of resources with different
lifespans to precisely express when a resource is released in re-
lation to the entire program (extending the C Standards notions
of storage duration and lifetime). Constraints related to the
ownership model and borrowing, combined with the concept
of lifespan of resources, allow the C-rusted Analyzer checking
that every time a reference is used, it refers to a resource whose
lifespan has not ended, thus ensuring temporal memory safety.
As a result, enforcing the constraints imposed by C-rusted
leads to compliance with Rule 18.9 and the formulation of a
safe deviation for Rule 18.6, since no dangling pointer can be
used without raising a warning of the analyzer.

3) Spatial Memory Safety: Spatial memory safety is about
accessing objects within the intended boundaries. Several
MISRA C guidelines are there to prevent buffer over-
flow/underflow: Rule 17.5, Rule 18.1, Rule 21.17, and
Rule 21.18.

C-rusted includes forward, bidirectional and string iterators
by explicitly associating to a reference the information about
the boundaries of the referred resource, such as size, the count
of elements and the references to the beginning element and/or
to the past-the-end element. This allows the programmer
iterating in a controlled and safe way with the assistance of
the C-rusted Analyzer: if no warnings are given, this ensures
compliance with the aforementioned rules for code not inside
unsafe blocks. If manual iteration or pointer arithmetic is
needed, this will have to be contained in unsafe blocks and
compliance with such rules will have to be demonstrated, or
other means of ensuring safety will have to be applied.

4) Resource Acquisition and Release: The C-rusted own-
ership model is applicable to any kind of system- or user-
defined resource: it is based on e_own() annotations and it
ensures each resource is correctly acquired and then released.
As an example, consider the fopen() and fclose() functions
of <stdio.h>: the former is interpreted in C-rusted as if
returning an optional owning reference to a FILE object; the
latter is considered the release function for such ownership.17

16Note that there are other factors to be considered before allowing the use
of dynamic memory in safety critical systems, such as the execution time of
allocators/deallocators and dealing with out-of-storage run-time failures [17].

17C Standard library and the POSIX library have been annotated once and
for all, so that the C-rusted Analyzer is able to correctly interpret the behavior
of their functions (the same can be done for any frequently used library).

A program compliant to the C-rusted ownership model is
therefore compliant with MISRA C Rule 22.1 (All resources
obtained dynamically by means of Standard Library functions
shall be explicitly released), Rule 22.6 (The value of a pointer
to a FILE shall not be used after the associated stream has been
closed), and compliant with Dir 4.13 (Functions which are
designed to provide operations on a resource should be called
in an appropriate sequence) for the part related to resource
allocation and deallocation.

5) Initialization: Rule 9.1 (The value of an object with
automatic storage duration shall not be read before it has
been set) and Rule 9.7 (Atomic objects shall be appropriately
initialized before being accessed) are MISRA C’s mandatory
guidelines regarding object initialization.

C-rusted manages uninitialized memory in a way similar to
the one used for optional pointers: every formal parameter is
considered as initialized by default, meaning that, whenever
possibly uninitialized memory is passed to or returned from
a function, this shall be made explicit via a e_uninit()

annotation. This requires also the support for initialization
functions: the e_init() annotation is used to annotate for-
mal parameters to specify that the function will completely
initialize the referred resource (i.e., it will write it completely
and not read any part of it without prior writing). In the
case of atomic objects, according to the amplification of
Rule 9.7, the C-rusted Analyzer considers the object as
initialized only if directly initialized in its declaration or after
a call to atomic_init(). Effective and complete tracking
of the initialization state of resources throughout the program
avoids any possible read from uninitialized memory locations,
thereby ensuring compliance with both Rule 9.1 and Rule 9.7.

6) Error Handling: C-rusted provides e_err() annotations
to explicitly define whether a function returns error informa-
tion through its return value, a parameter, or a global variable.
The C-rusted Analyzer checks whether such error information
is handled after every function call and raise an error if this
is not the case, or if the function does not set the error
information in at least one of its exit paths. A disciplined
programmer, by following the discipline of proper function
annotation, can use this as an argument to claim compliance
with Dir 4.7 (If a function returns error information, then that
error information shall be tested) and partial compliance with
Rule 17.7 (The value returned by a function having non-void
return type shall be used).

7) Restricted Pointers: Use of the C’s restrict type
qualifier can result in performance improvements and more
precision in static analysis. Nonetheless, a misuse of such
qualifier caused by unwanted pointer aliasing is undefined
behavior: this is why use of restrict is discouraged by
MISRA C Rule 8.14.

C-rusted distinguishes between exclusive and shared ref-
erences. As the name suggests, an exclusive reference grants
exclusive access to a resource, meaning that the C-rusted Ana-
lyzer ensures that no more than one usable exclusive reference
to the same resource can exist at any given time. Moreover,
the existence of a usable exclusive reference is incompatible

www.embedded-world.eu

with the existence of any other usable reference to the same
resource. This is a valid argument to deviate Rule 8.14
when implicit or explicit exclusive references are restrict-
qualified: all the constraints related to the restrict qualifier
are, in fact, implicitly satisfied by the borrowing model.

B. MISRA C for C-rusted

While the most infamous and dangerous undefined behav-
iors of C are avoided in C-rusted, other undefined and critical
unspecified behaviors are not covered. The reason is that, C-
rusted has been designed to leverage on MISRA C while being
100% compatible with it.

In C-rusted, code not inside unsafe blocks shall be MISRA
compliant under the C-rusted Guideline Re-categorization
Plan. A Guideline Re-categorization Plan (GRP) [26] is an
assignment to each MISRA C guidelines of a possibly new
category as follows:

• A required guideline can be re-categorized as required or
mandatory;

• A advisory guideline can be re-categorized as advisory,
required, mandatory, or disapplied, the latter meaning
that the guideline needs not be checked.

In the C-rusted GRP, most MISRA C guidelines regarding
undefined, or critical unspecified, or implementation-defined
behavior are re-categorized as mandatory. In addition, Dir 1.2
(The use of language extensions should be minimized), is also
re-categorized as mandatory. Consequently:

• Possibly non-definite pointer conversions can only be
done in unsafe blocks, as the rules in MISRA C Series 11
(Pointer type conversions) from Rule 11.1 to Rule 11.8
are mandatory in safe C-rusted code.

• Language extensions, which includes assembly code ex-
pressed alongside C code in whatever form, can only be
used in unsafe blocks.

Rule 8.13 (A pointer should point to a const-qualified
type whenever possible) is also re-categorized as required:
this enforces const correctness and, in turn, is exploited by
the type inference of C-rusted to infer the exclusive or shared
nature of a reference without the need of annotations.

In general, compliance with the (re-categorized) MISRA C
guidelines simplifies the job of any static analyzer, including
the C-rusted Analyzer.

VI. INTEGRATION OF MISRA C, C-RUSTED, AND RUST IN
SAFETY-CRITICAL INDUSTRIES

Industries like automotive, aerospace, railways, and medical
require high-assurance software due to strict safety, security,
and reliability requirements. Each industry has legacy C code-
bases, but also needs modern, memory-safe solutions. They
also need to comply with functional safety and cybersecurity
standards. This is where MISRA C, C-rusted, and Rust may
work together to ensure safe and secure software development.
We review some of the challenges and possible solutions
adopting all these technologies in the following sections, each
one devoted to a specific industry sector.

A. Automotive Industry

Standards: ISO 26262 (Road Vehicles — Functional Safety)
[28].

Challenges:
• Real-time constraints, power efficiency, and strict

safety requirements.
• Extensive use of C due to hardware constraints and

legacy software.
• Growing demand for memory safety and security hard-

ening, especially in autonomous driving.
Possible integration: MISRA C enforces safe coding guide-

lines for C to comply with ISO 26262; C-rusted intro-
duces ownership, exclusivity, and advanced static analysis
to improve memory safety in existing MISRA C code-
bases; Rust can be used for safety-critical components,
particularly in ADAS (Advanced Driver Assistance Sys-
tems) and in next-gen automotive firmware.

Example integration: ECU (Electronic Control Unit) where:
existing ECUs rely on MISRA C for compliance with
ISO 26262; C-rusted is used to refactor and validate
safety-critical functions while ensuring compliance; Rust
is introduced for new safety-critical modules, such as sen-
sor fusion or AI-based decision-making in autonomous
systems.

B. Aerospace Industry

Standards: RTCA DO-178C (Software Considerations in
Airborne Systems) [29].

Challenges:
• High certification costs (DO-178C requires extensive

testing and verification).
• Legacy avionics software in C must be maintained for

decades.
• Security threats to avionics systems require better

memory-safe approaches.
Possible integration: MISRA C enforces structured C devel-

opment for DO-178C compliance; C-rusted allows safe
refactoring of avionics software while maintaining certifi-
cation; Rust can be used in new secure avionics modules,
flight control software, and mission-critical embedded
systems.

Example integration: Flight Control Systems where: existing
flight software follows MISRA C; C-rusted enables safer
updates to navigation, fault-tolerant systems; Rust may
be adopted for mission-critical firmware in newer designs
(see, e.g., [30]).

C. Railway Signaling and Control Systems

Standards: CENELEC EN 50128, EN 50657, EN 50716
(Software for Railway Control and Protection Systems).
[31], [32], [33].

Challenges:
• Railway control systems extremely safety-critical.
• Long-term software maintenance (railway systems last

30+ years).

• Standards compliance mandating extensive software
verification.

Possible integration: MISRA C ensures safe coding prac-
tices in railway control software; C-rusted may be used
to validate memory safety in existing control system
firmware; Rust may be applied to newer train automation,
AI-based monitoring, and security-critical modules.

Example integration: Railway Signaling Systems where: ex-
isting train control systems strongly rely on MISRA C;
C-rusted improves safety verification in legacy railway
firmware; Rust is used in AI-driven predictive mainte-
nance (e.g., detecting rail faults).

D. Medical Devices and Healthcare Software

Standards: IEC 62304 (Medical Device Software) [34];
FDA’s General Principles of Software Validation [35].

Challenges:
• Memory safety bugs in medical devices can be life-

threatening (see, e.g., [36]).
• Medical software must comply with functional safety

and security standards. Legacy C-based firmware needs
security improvements.

• Standards compliance mandating extensive software
verification.

Possible integration: MISRA C ensures safe, secure and
reliable firmware for medical devices; C-rusted enables
safer static analysis and verification for C-based medical
software; Rust may be used in secure patient monitoring,
medical imaging, and robotic surgery systems.

Example integration: Pacemakers and Medical Implants
where: legacy pacemaker software follows the MISRA C
guidelines; C-rusted validates memory safety in critical
heart-monitoring firmware; Rust is used for AI-based
diagnostics and real-time imaging.

Summarizing, we envisage a gradual and practical transi-
tion. Since many critical industries still rely on C, transitioning
entirely to Rust is not feasible, but we believe a hybrid
approach works. As regulatory bodies are increasingly pushing
for memory-safe languages, more industries will incrementally
move towards Rust, but C will persist in legacy systems and
very performance-sensitive applications. In this scenario, C-
rusted may act as a bridge, allowing industries enhancing
safety in C without massive rewrites.

VII. CONCLUSION

The increasing demand for secure and reliable software has
made memory safety a critical concern in industries such as
automotive, aerospace, railways, and medical devices. Govern-
mental and regulatory bodies have recognized this urgency,
advocating for the adoption of memory-safe programming
languages as a means to strengthen cybersecurity. While Rust
has been positioned as a leading solution due to its strong
memory safety guarantees, a full-scale migration from C to
Rust is neither practical nor economically viable for many
industries that rely on extensive C-based ecosystems.

A pragmatic approach to improving software security must
therefore involve a gradual and integrated transition that bal-
ances memory safety with existing investments in software
infrastructure. MISRA C has long provided a foundation for
safe C programming, enabling safety-critical industries to
improve software reliability while maintaining compatibility
with legacy systems. C-rusted extends this approach by in-
corporating modern verification techniques inspired by Rust,
allowing for stronger static analysis and improved memory
safety within existing C codebases. Meanwhile, Rust can
be strategically introduced for new developments where its
ownership model and zero-cost abstractions offer significant
security and performance advantages.

By adopting an integrated strategy that leverages MISRA C,
C-rusted, and Rust, industries can achieve meaningful cyber-
security improvements without disrupting existing workflows.
This approach ensures that memory safety is enhanced incre-
mentally, reducing costs while maximizing security benefits.
Furthermore, just as MISRA C has guided the safe use of C,
it is essential to define a corresponding set of guidelines for
Rust, ensuring that its use in safety-critical domains aligns
with best practices and regulatory requirements.

Ultimately, the transition to more secure software must be
driven by practical considerations rather than hype. A well-
balanced methodology — grounded in proven safety standards,
incremental adoption, and rigorous security verification —
offers the most effective path forward. By combining MISRA
C for legacy safety, C-rusted for enhanced C verification, and
Rust for forward-looking security, industries can achieve safer,
more resilient, and future-proof software architectures without
sacrificing the value of decades-long investments in C-based
systems.

Acknowledgments

We wish to thank the following members of the MISRA
C Working Group, and their employers, for their significant
contribution to the joint work that led to the creation of Table I
and of MISRA C:2025 Addendum 6 [25]: Andrew Banks
(LDRA Ltd and Intuitive Consulting) and Alex Celeste (Per-
force). Thanks are also due to other members of the MISRA
C Working Group, and their employers, for their contribution
to the review phase of the documents, namely: Jill Britton
(Perforce), Douglas Deslauriers (Vector Informatik GmbH),
Daniel Kästner (AbsInt Angewandte Informatik GmbH), Ger-
linde Kettl (Vitesco Technologies GmbH), Gavin McCall
(Codethink Ltd), Chris Miller (GE Aerospace), Chris Tapp
(Keylevel Consultants), and David Ward (HORIBA MIRA
Limited). The MISRA C Guideline headlines are reproduced
with permission of The MISRA Consortium Limited. Last but
not least, we are grateful to Lavinia Battaglia and Patricia
M. Hill, both of BUGSENG, for their help improving the
present manuscript.

REFERENCES

[1] “The Case for Memory Safe Roadmaps — Why Both C-Suite Executives
and Technical Experts Need to Take Memory Safe Coding Seriously,”
U.S. Cybersecurity and Infrastructure Security Agency, U.S. National

www.embedded-world.eu

Security Agency, U.S. Federal Bureau of Investigation, Australian Sig-
nals Directorate’s Australian Cyber Security Centre, Canadian Centre
for Cyber Security, U.K. National Cyber Security Centre, New Zealand
National Cyber Security Centre, Computer Emergency Response Team
New Zealand, Tech. Rep. 508c, Dec. 2023.

[2] White House Office of the National Cyber Director. (2024,
Feb.) Back to the building blocks: A path toward
secure and measurable software. Previously available at
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-
Technical-Report.pdf. [Online]. Available: https://upload.wikimedia.
org/wikipedia/commons/e/e6/Back to the Building Blocks -

A Path Toward Secure and Measurable Software.pdf
[3] MISRA, MISRA C:2012 — Guidelines for the use of the C language in

critical systems. Nuneaton, Warwickshire CV10 0TU, UK: MIRA Ltd,
Mar. 2013.

[4] R. Bagnara, A. Bagnara, and F. Serafini, “C-rusted: The advantages
of Rust, in C, without the disadvantages,” Report 2302.05331
[cs.PL], 2023, available at http://arxiv.org/. [Online]. Available:
https://arxiv.org/abs/2302.05331

[5] R. Bagnara, A. Bagnara, N. Vetrini, and F. Serafini, “C-rusted: A
formally verifiable flavor of C for the development of safe and secure
systems,” in embedded world Conference 2024 — Proceedings, DE-
SIGN&ELEKTRONIK, Ed. Nuremberg, Germany: WEKA FACHME-
DIEN, Richard-Reitzner-Allee 2, 85540 Haar, Germany, 2024, pp. 427–
438.

[6] S. Klabnik and C. Nichols, The Rust Programming Language. USA: No
Starch Press, 2022, online version available at https://doc.rust-lang.org/
book/ and maintained at https://github.com/rust-lang/book, last accessed
on March 9, 2024.

[7] MISRA, MISRA C:2025 — Guidelines for the use of the C language
in critical systems. Norwich, Norfolk, NR3 1RU, UK: The MISRA
Consortium Limited, Mar. 2025.

[8] P. Cousot, Principles of Abstract Interpretation. MIT Press, 2021.
[9] D. Kroening, P. Schrammel, and M. Tautschnig, “CBMC: The

C Bounded Model Checker,” Report arXiv:2302.02384 [cs.SE],
2023, available at http://arxiv.org/.

[10] D. M. Ritchie, The Development of the C Programming Language.
New York, NY, USA: Association for Computing Machinery, 1996, pp.
671–698. [Online]. Available: https://doi.org/10.1145/234286.1057834

[11] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in Proceedings of
the General Track: 2002 USENIX Annual Technical Conference,
C. S. Ellis, Ed. Monterey, CA: USENIX Association, Jun. 2002,
pp. 275–288. [Online]. Available: http://www.usenix.org/publications/
library/proceedings/usenix02/jim.html

[12] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and
V. Prevosto. (2024, Nov.) ANSI/ISO C specification language. CEA-
List, Inria. Version 1.21. [Online]. Available: https://github.com/acsl-
language/acsl

[13] R. Bagnara, A. Bagnara, P. M. Hill, and N. Vetrini, Software Verification
Done Right: Introduction to Static Analysis, 1st ed. Parma, Italy:
BUGSENG, 2025. [Online]. Available: https://doi.org/10.979.12210/
84894

[14] Motor Industry Software Reliability Association, MISRA-C:1998 —
Guidelines for the use of the C language in vehicle based software.
Nuneaton, Warwickshire CV10 0TU, UK: MIRA Ltd, Jul. 1998.

[15] R. Bagnara, A. Bagnara, and P. M. Hill, “The MISRA C coding standard
and its role in the development and analysis of safety- and security-
critical embedded software,” in Static Analysis: Proceedings of the 25th
International Symposium (SAS 2018), ser. Lecture Notes in Computer
Science, A. Podelski, Ed., vol. 11002. Freiburg, Germany: Springer
International Publishing, 2018, pp. 5–23.

[16] ——, “The MISRA C coding standard: A key enabler for the develop-
ment of safety- and security-critical embedded software,” in embedded
world Conference 2019 — Proceedings, DESIGN&ELEKTRONIK, Ed.
Nuremberg, Germany: WEKA FACHMEDIEN, Richard-Reitzner-Allee
2, 85540 Haar, Germany, 2019, pp. 543–553.

[17] ——, “A rationale-based classification of MISRA C guidelines,”
in embedded world Conference 2022 — Proceedings,
DESIGN&ELEKTRONIK, Ed. Nuremberg, Germany: WEKA
FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar, Germany,
2022, pp. 440–451.

[18] ——, “Coding guidelines and undecidability,” in embedded world Con-
ference 2023 — Proceedings, DESIGN&ELEKTRONIK, Ed. Nurem-
berg, Germany: WEKA FACHMEDIEN, Richard-Reitzner-Allee 2,
85540 Haar, Germany, 2023, pp. 488–499.

[19] R. Bagnara, S. Stabellini, N. Vetrini, A. Bagnara, S. Ballarin, P. M.
Hill, and F. Serafini, “Bringing existing code into MISRA compliance:
Challenges and solutions,” in embedded world Conference 2024 —
Proceedings, DESIGN&ELEKTRONIK, Ed. Nuremberg, Germany:
WEKA FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar, Ger-
many, 2024, pp. 327–338.

[20] H. Zhang. (2023, Apr.) Comprehensive understanding of unsafe Rust.
[Online]. Available: https://rustmagazine.org/issue-3/understand-unsafe-
rust

[21] The Rust Team. (2025) The Rust reference. [Online]. Available:
https://doc.rust-lang.org/stable/reference/

[22] MISRA, MISRA C++:2023 — Guidelines for the use of C++17 in
critical systems. Norwich, Norfolk, NR3 1RU, UK: The MISRA
Consortium Limited, Oct. 2023.

[23] IEEE, IEEE Standard for Floating-Point Arithmetic, IEEE Computer
Society, Jul. 2019, IEEE Std 754-2019 (Revision of IEEE Std 754-2008).

[24] D. Keep, A. Burka, A. Gaynor, and D. van Berkel. (2016) The little
book of Rust macros. [Online]. Available: https://danielkeep.github.io/
tlborm/book/mbe-min-hygiene.html

[25] MISRA, MISRA C:2025 Addendum 6 — Applicability of MISRA C:2025
to the Rust Language. Norwich, Norfolk, NR3 1RU, UK: The MISRA
Consortium Limited, Mar. 2025.

[26] ——, MISRA Compliance:2020 — Achieving compliance with MISRA
Coding Guidelines. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA
MIRA Limited, Feb. 2020.

[27] The Rust Team. (2025) The Rustonomicon. [Online]. Available:
https://doc.rust-lang.org/stable/nomicon/

[28] ISO, ISO 26262:2018: Road Vehicles — Functional Safety. Geneva,
Switzerland: ISO, Dec. 2018.

[29] RTCA, SC-205, DO-178C: Software Considerations in Airborne Sys-
tems and Equipment Certification. RTCA, Dec. 2011.

[30] NASA. (2021, Sep.) Rust in cFS: Prevent bugs with memory-safe
programming. Goddard Space Flight Center. Completed technology
project page. [Online]. Available: https://techport.nasa.gov/projects/
96767

[31] CENELEC, EN 50128:2011/A2:2020: Railway applications — Com-
munication, signalling and processing systems — Software for railway
control and protection systems. Brussels, Belgium: CENELEC, Aug.
2020, amendment A2 to EN 50128:2011.

[32] ——, EN 50657:2017/A1:2023: Railway applications — Rolling stock
applications — Software on Board Rolling Stock. Brussels, Belgium:
CENELEC, Nov. 2023, amendment A1 to EN 50657:2017.

[33] ——, EN 50716:2023: Railway Applications — Requirements for soft-
ware development. Brussels, Belgium: CENELEC, Nov. 2023.

[34] IEC, IEC 62304:2006/Amd 1:2015: Medical device software — Software
life cycle processes — Amendment 1. Geneva, Switzerland: IEC, Jun.
2015.

[35] U.S. Department Of Health and Human Services, Food and Drug
Administration, Center for Devices and Radiological Health, Center
for Biologics Evaluation and Research, General Principles of Software
Validation; Final Guidance for Industry and FDA Staff. CDRH, CBER,
Jan. 2002.

[36] C. M. Mejı́a-Granda, J. L. Fernández-Alemán, J. M. Carrillo-de-Gea, and
J. A. Garcı́a-Berná, “Security vulnerabilities in healthcare: an analysis
of medical devices and software,” Medical & Biological Engineering &
Computing, vol. 62, pp. 257–273, 2024.

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://upload.wikimedia.org/wikipedia/commons/e/e6/Back_to_the_Building_Blocks_-_A_Path_Toward_Secure_and_Measurable_Software.pdf
https://upload.wikimedia.org/wikipedia/commons/e/e6/Back_to_the_Building_Blocks_-_A_Path_Toward_Secure_and_Measurable_Software.pdf
https://upload.wikimedia.org/wikipedia/commons/e/e6/Back_to_the_Building_Blocks_-_A_Path_Toward_Secure_and_Measurable_Software.pdf
http://arxiv.org/
https://arxiv.org/abs/2302.05331
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://github.com/rust-lang/book
http://arxiv.org/
https://doi.org/10.1145/234286.1057834
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://github.com/acsl-language/acsl
https://github.com/acsl-language/acsl
https://doi.org/10.979.12210/84894
https://doi.org/10.979.12210/84894
https://rustmagazine.org/issue-3/understand-unsafe-rust
https://rustmagazine.org/issue-3/understand-unsafe-rust
https://doc.rust-lang.org/stable/reference/
https://danielkeep.github.io/tlborm/book/mbe-min-hygiene.html
https://danielkeep.github.io/tlborm/book/mbe-min-hygiene.html
https://doc.rust-lang.org/stable/nomicon/
https://techport.nasa.gov/projects/96767
https://techport.nasa.gov/projects/96767

	Introduction
	The Quest for Memory-Safe and Efficient Programming Languages
	The Success of and Challenges of C
	The Emergence and the Promises of Rust
	MISRA C: A Safe and Secure Subset of C
	C-rusted: The Guarantees of Rust in ISO C
	Handling Null Pointers with Optional Annotations
	Ownership and Memory Management
	Preventing Aliasing Issues with Exclusive and Shared References
	Usability and Borrowing Rules

	Rust (Un)Safety
	Rust Undefined Behavior
	Erroneous Behavior
	Implementation-Defined Behavior

	Elements for a Rust Coding Standard
	Coverage of Rust Undefined Behaviors
	Coverage of Rust Erroneous Behaviors
	Deadlocks
	Memory and resource leaks
	Exiting without calling destructors
	Integer overflows
	Logic errors
	Exposing randomized base addresses through pointer leaks

	Applicability of the MISRA C Essential Type System
	Coverage of Developer Confusion
	A Mapping of MISRA C:2025 Guidelines to Rust

	C-rusted and MISRA C
	C-rusted for MISRA C
	Dynamic Memory Allocation
	Temporal Memory Safety
	Spatial Memory Safety
	Resource Acquisition and Release
	Initialization
	Error Handling
	Restricted Pointers

	MISRA C for C-rusted

	Integration of MISRA C, C-rusted, and Rust in Safety-Critical Industries
	Automotive Industry
	Aerospace Industry
	Railway Signaling and Control Systems
	Medical Devices and Healthcare Software

	Conclusion
	References

