
Bringing Existing Code into MISRA Compliance:
Challenges and Solutions

Roberto Bagnara
University of Parma, Italy

Email: name.surname@unipr.it

Stefano Stabellini
AMD, USA

Email: name.surname@amd.com

Nicola Vetrini, Abramo Bagnara,
Simone Ballarin, Patricia M. Hill

BUGSENG, Italy
Email: name.surname@bugseng.com

Federico Serafini
BUGSENG, Italy

Email: name.surname@bugseng.com
Ca’ Foscari University of Venice, Italy

Email: name.surname@unive.it

Abstract—Bringing an existing codebase into MISRA com-
pliance is known to be a difficult, risky and time-consuming
task. Yet, when a product needs a functional safety certifica-
tion and rewriting the software is out of question, this is a
necessity. Such an endeavor requires facing multiple tradeoffs
and, consequently, lots of experience both on the codebase and
on MISRA. The choices between deviating the guideline, and
the (often, many) ways in which code may be changed and
deviations may be formulated, are tough and with consequences
that are not immediately evident. While, clearly, a project
undertaking MISRA compliance at a late development stage
is likely to rely on deviations more than other projects, one
should take into account the interdependence among MISRA
guidelines and that such deviations have to be rock-solid (as
they will inevitably catch the assessors’ attention). In this paper,
we illustrate our experience and the several lessons learned while
undertaking MISRA compliance work in several projects. This
includes closed-source projects (which cannot be disclosed for
confidentiality reasons) as well as open-source projects, most
notably the Zephyr RTOS and the Xen hypervisor, both used
in many embedded systems.

I. INTRODUCTION

Open-source software (OSS) is quickly finding its way
in safety-critical embedded systems. The reason why this is
desirable are well known: access to innovative technologies
and products emerged from (and, quite often, well established
in) the OSS world; avoidance of vendor lock-in; leverage
of larger ecosystems allowing for cost reduction and shorter
development cycles. The lower layers in a typical software
stack are particularly suited to this move toward open-source
solutions: firmware, hypervisors and operating systems are
complex, critical common building blocks upon which a public
ranging from individual contributors to large corporations is
willing to invest. Notable examples include:

Trusted Firmware A collection of projects providing a ref-
erence implementation of secure software for Armv8-
A, Armv9-A and Armv8-M. That code, which is the
preferred implementation of Arm specifications, forms
the foundations of a Trusted Execution Environment on
application processors, or the Secure Processing Envi-

ronment of microcontrollers.1 The project is backed up,
among others, by Arm, Google, ST, Renesas, NXP, and
Linaro.

Xen Project Hypervisor A flexible, scalable and secure hy-
pervisor supporting multiple guest operating systems, in-
cluding Linux, Windows, NetBSD, FreeBSD and Zephyr,
and multiple Cloud platforms: CloudStack and Open-
Stack. Xen has a solid track record including millions
of installations worldwide.2 The project is backed up,
among others, by AMD, Arm, AWS, EPAM, and the
Linux Foundation.

Zephyr RTOS A small, scalable real-time operating system
targeted at connected, resource-constrained and embed-
ded devices. Zephyr is used in lots of existing products
and supports more than 600 boards.3 The project is
backed up, among many others, by Analog Devices,
Google, Intel, Meta, NXP, and the Linux Foundation.

This is just a selection of the open-source projects that
are currently targeting certification for use in safety-related
products. Among the many initiatives in this area, it is worth
mentioning the ELISA project: named after the initials of
Enabling Linux In Safety Applications, ELISA aims to make it
easier for companies to build and certify Linux-based safety-
critical applications.4 The project is backed up, among many
others, by Boeing, Red Hat, Arm, Bosch, Huawei, and the
Linux Foundation.

A. Challenges on the Safety-qualification of Existing OSS

Despite its theoretical desirability, the qualification of ex-
isting OSS for use in safety-related development presents sig-
nificant challenges involving different, though interconnected,
aspects [1]:
Processes Open-source projects do not follow a development

process that complies with functional-safety standards.

1https://www.trustedfirmware.org/
2https://xenproject.org/
3https://www.zephyrproject.org/
4https://elisa.tech/

www.embedded-world.eu

https://www.trustedfirmware.org/
https://xenproject.org/
https://www.zephyrproject.org/
https://elisa.tech/

That is not to say that they do not follow any pro-
cess at all. To the contrary, many of them follow a
reasonably formalized process involving the use coding
standards and style guides [2], [3], systematic testing
based on continuous integration systems, static analysis,
dynamic analysis and constraints on test coverage, infor-
mal reviews. For instance, the SQLite project is known
in the open-source community for its quality manage-
ment and thorough testing standards.5 Nonetheless, while
the established development processes of many open-
source projects satisfy the quality-related requirements of
functional-safety standards, safety-related requirements
remain largely uncovered: for example, a technical safety
concept (as defined, e.g., in ISO 26262 [4, Clause 7]) is
typically missing; as another example, formal inspections
(as defined, e.g., in ISO 26262 [5, Clause 3.82]) are
usually not conducted.

Artifacts Safety-related development requires the creation
and maintenance of a significant amount of artifacts
that, due to the incremental nature of open-source and
to its reliance on volunteers, are often not present or
maintained. Traceable requirements constitute the typical
example: they are missing in most open-source projects.

Governance The governance model adopted by the majority
of open-source projects clashes with the requirements
for safety-certification. Being largely based on volunteer
work, liability and responsibility for the proper use of
OSS is, by necessity, left to end users. Moreover, safety-
certification is often of interest to only a part of the
community, with the result that the rest of the community
might be unwilling to bear the extra burden and costs that
safety-related development brings with itself.

These aspects compound in negative ways with the following:

High configurability Many OSS projects are highly con-
figurable:6 as a consequence, obvious economic con-
siderations imply that safety-qualification may only be
done for a tiny subset of the available configurations.
This requires configuration mechanisms that are aligned
with the objectives of functional-safety standards. For
instance, as all code should be traceable to requirements,
if only a subset of the project is subject to the safety
qualification, then it must be proved that what ends up
in the final deliverable is exactly what is expected to
be there, and nothing more. Moreover, there is the risk
of community fragmentation arising from the distinction
between project parts that are safety-qualifiable and those
that are not. And how to handle the code that is in the
intersection?

Pace of development Many OSS projects evolve with such a
high pace that updating the required safety artifacts may

5See https://www.sqlite.org/qmplan.html and https://www.sqlite.org/testing.
html.

6In many cases, their high configurability (e.g., for operating systems,
the range of supported boards) is a key factor for their popularity and
attractiveness.

be infeasible.7

Virtuoso culture Traditionally, OSS projects have been an
excellent training ground for virtuoso programming.
While code for functional-safety should be boring and
obviously correct to peer reviewers and assessors, highly-
regarded (and truly talented!) individuals in OSS commu-
nities take pride in writing concise and possibly very effi-
cient code, often at the expense of readability. This is of-
ten combined with a resistance to: writing documentation
(because “code speaks by itself”); following procedures
(because “speed of development is reduced”); complying
to standards (because “we of course know better”). One
is tempted to paraphrase the famous sentence coined by
David Clark in 1992 [6] to partially capture an attitude
still very popular in many open-source circles: “We reject:
processes, coding standards, and metrics. We believe in:
rough consensus and running code.”

B. Possible Approaches to Safety-qualification of Existing OSS

Safety-qualification of existing open-source software is not
an easy matter. What has to be accounted for carefully is that
part of the savings due to not having to write the software from
scratch will have to be invested into the safety-qualification
effort. In the following sections we review, following [1], what
the main alternatives are. It has to be noted that they are not
mutually exclusive and that a combination of them is desirable
and, often, the only way to go.

1) Retrofitting Safety: For existing OSS that is believed to
be reasonably close to the spirit of the applicable functional
safety standards, one possibility is to create the missing safety
artifacts for qualification. This typically involves

a) the creation/adaptation of requirements and of tests for
those requirements;

b) the establishment of traceability between the require-
ments, the implementation and the tests;

c) the definition of suitable coding standards (very often
these are based on the MISRA standards [7], [8], [9]);

d) adherence to the chosen coding standards.
Points (a) and (d) are, by far, the most resource-demanding
ones. However, while point (a) may only require limited
changes to the main codebase (i.e., the implementation may
need fixes to address the mistakes possibly uncovered by the
new tests), point (d) may involve extensive code modifications:
it is not uncommon for projects that never enforced, say, the
MISRA coding standards, to start with a number of violations
in the order of hundred of thousands or millions. Which
involves the choice between propagating the changes upstream
and forking the project. Forking may be the only viable option
in case the project community has divergent views about the
objectives and/or means of conducting the safety-qualification.
Not that pushing the changes upstream does not have its share
of issues: acceptance of the changes will sometimes be painful,
especially if project contributors are not adequately trained.
In order for this to scale up effectively, there needs to be

7Again, fast-evolving projects are popular also for that very reason.

https://www.sqlite.org/qmplan.html
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html

automation in place to repeat the coding standard compliance
checks: projects that have an active community and to which
changes are incorporated daily can only keep up if every code
change is promptly and automatically checked.

2) Fork: While sometimes forking the project is unavoid-
able due to a mismatch between the project governance and the
safety-qualification requirements, it is not something that can
be decided lightly. Changes in the upstream project will have
to be backported, whether they are interesting new features or
bugfixes: in any case a decision will have to be made to either
ignoring the change or to importing it with all the reworking
that is required not to negatively impact functional safety.
And in some cases, such as the ones of newly discovered
vulnerabilities, the decision cannot be neglected. On the other
hand, the cost of backporting the upstream changes will
increase over time if the projects keep diverging. Summarizing,
permanent forking might be advantageous only for projects
that are considered very stable and fit for purpose for the
foreseeable future. Yet, temporary forking might be required
in the final phases of safety-qualification. This is due to the
Pareto principle, which can be formulated as follows: “The
final 20% of the safety-qualification work requires 80% of the
total resources invested.” In other words, due to the typical
governance of OSS, while upstreaming the initial 80% of the
changes might be done in a time-effective way, the final 20%
of the changes have usually to be treated differently in order
to honor the deadlines of safety-qualification; for these cases,
a temporary fork might be appropriate to buffer the changes
with the hope they will be accepted upstream in due course.

3) Refrain from Safety-qualification: Another possibility is
not to safety qualify the OSS, or to safety-qualify only a part
of it. In the first case, the correct operation of the OSS will
have to be monitored by appropriate subsystems and suitable
mitigations must be in place. In the second case, which is not
disjoint from the first one, only part of the OSS will be safety-
qualified. In both cases, a proof must be provided that there is
no interference between the non safety-qualified components
and the safety-qualified ones (e.g., the monitors): luckily there
are tools that help automating that process almost completely
so that the checks can be redone effortlessly at any update of
the OSS [10].

C. Role and Scope of this Paper

In this paper, we illustrate our experience and the several
lessons learned while undertaking MISRA compliance work in
several projects. This includes closed-source projects (which
cannot be disclosed for confidentiality reasons) as well as
open-source projects, most notably the Zephyr RTOS and the
Xen hypervisor, both used in many embedded systems.

The paper is structured as follows: Section II explains the
role of the MISRA coding standards in functional safety;
Section III discusses two different ways in which existing code
can be considered for inclusion into a project seeking MISRA
compliance and why “tailoring” of the MISRA guidelines
is essential to deal with it; Section IV presents the Xen
Hypervisor project; Section V illustrates some points worth

of mention arising from the work we did on the MISRA
compliance of Xen; Section VI discusses lessons learned and
take-home messages; Section VII concludes the paper.

II. MISRA COMPLIANCE AND FUNCTIONAL SAFETY

Functional-safety standards (such as ISO 26262 [11], CEN-
ELEC EN 50128 [12] and EN 50657 [13], IEC 61508 [14],
IEC 62304 [15], IEC 60335 [16], and RTCA DO-178C [17])
concur on the fact that safety-critical software has to be:

• traceable to documented requirements;
• verifiable and verified by means of peer review, static and

dynamic analyses, and testing.
Use of programming languages are allowed provided the
following points are taken into account:

1) they are standardized (e.g., by ISO or other authoritative
standardization bodies);

2) programs have a well-defined semantics (i.e., no unde-
fined or unspecified behaviors);

3) translators are qualified (to reduce the risk they would
introduce defects in compiled code);

4) programs refrain from using error-prone or difficult-to-
understand constructs, so as to maximize readability and
understandability for the sake of more effective peer
review;

5) program units (e.g., functions) are of limited complexity
to ensure testability and, again, improve readability and
understandability.

For the C and C++ languages, all these concerns are addressed
by the MISRA coding standards [7], [8], [9]. MISRA C and
MISRA C++ define subsets of the standardized versions of C
and C++, respectively, addressing most of the points above [2],
[3], [18]. Concerning the limitation of complexity, the MISRA
standards recommend the use of metrics, even though they
leave the choice of the metrics to be used to the individual
organizations. Regarding the qualification of translators, the
MISRA standards do their part in limiting the use of non-
standard language extensions.

While the MISRA coding standards are unanimously con-
sidered the most authoritative ones for safety-related devel-
opment in C and C++, their adoption on existing code can
be challenging. For some OSS projects a partial adoption,
possibly following the rationale-based classification proposed
in [18], or the adoption of a less rigorous coding standard,
such as BARR-C:2018 [19] might be the right choice. As
explained in [20] adoption of BARR-C:2018 might be, for
some OSS projects, a good intermediate step towards the
adoption (upstream or downstream) of MISRA C as well as a
way to fulfill the prescription of a defined coding style that,
as in the case of metrics, MISRA recommends while leaving
freedom of choice.

III. MISRA COMPLIANCE OF EXISTING CODE

It is well known that the greatest benefits from the adoption
of the MISRA coding standards can be obtained when the
coding standard is enforced since the very beginning of the

www.embedded-world.eu

project. In fact, blindly imposing the MISRA guidelines upon
an existing code base with a proven track record may be
counterproductive if not done properly. However, one thing
that is often misunderstood is that MISRA does not ask for
blind adoption: to the contrary, the MISRA coding standards
clearly state that code quality always comes first. MISRA
compliance is one way to assess code quality, but neither
is it exhaustive nor is it the only way: code can be of very
high quality and yet have many violations. Indeed, a MISRA
violation is just a call for attention: raising a deviation is, in
many cases, the best course of action [21].

It is important to distinguish two different uses of so-called
legacy code in a safety-related project:

1) Existing code that is considered fit-for-purpose in its
present form, and thus (after having been properly as-
sessed) needs not be read, understood, let alone modified
by anyone; such code, as far as MISRA is concerned,
can be considered adopted code. The MISRA coding
standards have special, simplified prescriptions for the
compliance of adopted code [21].

2) Existing code that is imported into the safety-related
project as a useful starting point, but that requires further
development and adaptation work.

While this paper is only concerned with the second case (that
is, legacy code that cannot be considered adopted code under
the MISRA definition), some considerations can be made that
apply to both cases.

A. Tailoring the Guideline Selection and Individual Guide-
lines

Working effectively with legacy code requires distinguishing
those aspects of the MISRA guidelines that relate to unde-
fined or unspecified behavior from those related to possible
developer confusion [18]. While the former aspects cannot be
underestimated and have to be addressed one way or another,
the latter aspects can, after due consideration, be discounted
for legacy code: this can significantly reduce the MISRA
compliance effort.

Consider MISRA C Rule 10.1 (Operands shall not be of an
inappropriate essential type) as an example: this places restric-
tions on the types that operands can have for each of the many
C operators. Violating some restrictions might cause undefined
behavior: this is the case for negative shift counts in shift
operations. Other violations concern extremely fishy things,
such as involving Booleans in arithmetic operations. However,
other violations concern possible developer confusion and/or
implementation-defined behavior, such as using integers in a
Boolean context (a pattern that is very common in legacy
code) or performing bitwise operations on signed integers.
As the number of Rule 10.1 violations in legacy code can
be very high (on the order of tens of thousands for medium-
sized embedded software projects), violations for code that is
safe and well understood by the relevant community may be
deviated globally in the tool configuration, in order to allow
developers to focus the effort on code issues that more likely
constitute software defects. For example:

• the value-preserving conversions of integer constants are
safe;

• shifting non-negative integers to the right is safe if the
shift count is non-negative and not too large;

• shifting non-negative integers to the left is safe if the shift
count is non-negative and not too large, and if the result
is still non-negative;

• bitwise logical operations on non-negative integers are
safe even if the operands are of signed type;

• the implicit conversion to Boolean for logical operator
arguments is safe;

• on architectures where signed integers are represented
using two’s complement (i.e., all the ones currently in
use, to the point that this representation will be the
only one supported by C23, the next standard for the
C programming language), the behavior of bitwise and,
or, xor and negation on signed integers can be assumed
to be known by all developers.

The MISRA coding guidelines represent a compromise
between competing goals: program safety and programmers’
freedom of writing “clever” and compact code. Safety not
only requires the “bad thing” to be prevented: the “bad
thing” has to clearly and unambiguously be prevented, i.e.,
code reviewers should immediately see that the “bad thing”
has been prevented. A consequence is that the guidelines
need to be simple which, in turn, due to the “safety first”
principle, entails that guidelines are often more restrictive than
strictly necessary. When code is existing before the application
of the MISRA guidelines, developers typically have already
taken measures to prevent the most common mistakes from
happening, possibly from a different angle with respect to
the one taken by the MISRA guidelines. The presence of
such measures can be a hindrance to the adoption of some
guidelines but, at the same time, the value they provide to
the project is indisputable. Some of the most widely used
approaches concern a combination of build-time and run-time
assertions, the encapsulation of tricky functionality in macros
and inline functions, and the definition of a coding style that all
the contributors of the project must follow. Such conventions
are enforced during code reviews and, in some cases, can be
supported by compiler warnings and other automatic checks.
When a project has its own established measures to prevent
the “bad thing”, insisting on full adherence to the MISRA
guidelines is counterproductive: there is always the risk of
inadvertently introducing new defects in a way that escapes
the usual testing activities. Therefore, it is often the case that
project-defined measures need to be special-cased, assuming
that the tool used to prove compliance supports them. Indeed,
when dealing with existing code, the ability to “tailor” the
MISRA guidelines is therefore a crucial ingredient to success.
This is 100% in line with the MISRA spirit: guideline selection
and justified deviation are part of the very concept of “MISRA
compliance” [21]. For guideline selection, the MISRA cat-
egorization of mandatory, required and advisory guidelines
is designed to adapt the coding standards to the particular

project. Note also how, for problematic language features the
MISRA approach joins very strict advisory rules, disallowing
all uses of the feature, to required or mandatory rules, which
allow less problematic uses of such features. The rationale is
as follows: if the advice about not using the feature altogether
can be taken, a whole class of code issues can be avoided
in a way that does not require further checks; otherwise, if a
strong motivation exists for using the feature (e.g., due to the
presence of infrastructure code that would be too expensive
to rewrite in a fully MISRA compliant manner, or code that
is imported periodically from other external sources), then the
coding standard provides guidance on how to use it in a way
that is, on average, safer.

B. Highly Configurable Projects

One of the common reasons why existing code might be
attractive is its high configurability, as this increases the
likelihood that it can be suitably configured for the project
at hand. This is an important factor to be considered when
bringing such projects towards MISRA compliance. For those,
there will typically be modules and configurations for which
MISRA compliance is not currently sought but, due to shared
headers and source files, they cannot simply be ignored. This
requires particular care in limiting the perimeter of the code
that needs to comply to the guidelines and in the handling
of the cases that are on the boundary (e.g., violations that
manifest themselves in a source file meant to comply, but are
due to non-compliant code in file that is not meant to comply).

C. The Special Case of Open Source Projects

One of the peculiarities of OSS software is that generally
anyone is welcome to contribute to it, and the review pro-
cess for incorporating changes is often public and arbitrarily
thorough. One of the conditions that should be met in order to
effectively take on a MISRA compliance process is to reach an
agreement in the community (or at least the main maintainers)
on the desirability of such process, for otherwise the proposed
changes may be perceived as unmotivated and then rejected.
Even when such generic consensus has been reached, each
modification suggested by the violation of MISRA guidelines
should be motivated in detail so that reviewers can appreciate
the resulting code quality improvement. One of the problems
is that the vast majority of OSS contributors are not in
possession of the main MISRA publications. Note also that
OSS communities comprise contributors with very diverse
backgrounds and areas of expertise and very few of them have
received suitable MISRA training.

IV. THE XEN HYPERVISOR PROJECT

Before going into the experience of the authors in their work
on MISRA compliance of the Xen hypervisor, this section
introduces the system and its role in the development of safety-
critical systems.

A. The Xen Hypervisor Project

Xen, originating in 2003 from Ian Pratt’s team at the
University of Cambridge’s Computer Laboratory, stands as the
first open-source hypervisor. Over the years, Xen has gained
widespread industry adoption: it is integrated into all major
Linux distributions and has become the backbone of the largest
cloud infrastructures starting from Amazon AWS.

Xen is a type-1 hypervisor with a microkernel design. It runs
independently at a higher privileged mode, separately from
any operating system. Everything else runs on top of Xen as
a Virtual Machine (VM). In a traditional Xen architecture, the
first VM to boot, known as dom0, typically uses Linux and
holds privileged capabilities, such as creating and destroying
other VMs. In 2018, the introduction of the dom0less feature
marked a significant evolution of the project, allowing for fully
functional Xen systems without the dom0 control domain.
This setup involves statically pre-configuring the system before
system-start and enabling Xen to create all VMs in parallel at
boot time.

Xen was originally designed for the x86 architecture. In
2011, an effort started to port Xen to ARMv7 with vir-
tualization extensions (32 bits). Today, Xen’s compatibility
extends beyond x86 and ARMv7 to ARMv8 (64 bits) and other
architectures like RISC-V, PowerPC, ARMv7-R, and ARMv8-
R. The expansion to ARM ushered Xen into the realm of
embedded devices. Today, Xen is the reference open-source
hypervisor for the embedded and automotive sectors, thanks
to its microkernel design, the vibrant community, and rich
feature set.

B. Xen Role in Safety-Critical Systems

Xen boasts a rich array of features, making it an excellent
choice for embedded and automotive applications. In par-
ticular, Xen is instrumental in achieving independence and
freedom from interference as defined in ISO 26262 [11].
For instance, Xen adeptly runs a real-time operating system
(RTOS) for critical applications, alongside other, larger and
non-critical VMs, such as Linux. Xen ensures that the RTOS’
interrupt latency and execution time are low and deterministic,
even when other VMs are under heavy load. One of its
standout features, cache coloring, allows Xen to partition
the last-level cache, effectively eliminating cache interference
between VMs and enhancing isolation. This feature empowers
Xen to consistently guarantee an interrupt latency of just 4
microseconds, regardless of the system’s overall activity.

V. MISRA COMPLIANCE OF XEN: SELECTED
HIGHLIGHTS

As one of the most critical components in the system, Xen is
an ideal candidate for the highest levels of safety certification.
In 2023, AMD, together with the Xen Community, kicked off
a series of activities to make Xen safety-certifiable according
to the ISO 26262 automotive standard [11] and the IEC 61508
industrial standard [14], spanning AMD x86 and ARM archi-
tectures. Additionally, they have laid the foundation of the

www.embedded-world.eu

testing infrastructure, based on GitLab, and started drafting
safety requirements.

During the first nine months of the new endeavor, 80%
of the relevant MISRA C rules have been integrated into
the Xen coding style and, with the help of BUGSENG
consultants, numerous MISRA C violations were resolved.
BUGSENG also provided the initial MISRA C training to
all maintainers and other Xen contributors. The ECLAIR
Software Verification Platform has been integrated into the
upstream Xen Continuous Integration (CI) loop to prevent new
unjustified MISRA C violations from entering the codebase.
The target of the project is to achieve compliance with respect
to MISRA C:2012 Revision 1 with Amendment 2 [7], [22]
following the prescriptions of MISRA Compliance:2020 [21].

In this section, we draw from this experience to illustrate
how the principles outlined in the previous sections can be
applied effectively to existing codebases. The code snippets
reported in the sequel are mostly taken from the Xen project
main Git repository8 and are possibly redacted for presentation
purposes. Xen is based on C99 [23], the configurations to be
qualified are for the AMD x86-64 and the ARM64 architec-
tures. The translation toolchain is based on suitable versions
of the GNU C compiler.

A. Pointer Type Safety

MISRA C Rule 7.4 requires that string literals are assigned
only to variables of type pointer to const-qualified char
where, in MISRA C parlance, assignment covers also parame-
ter passing to and value return from functions. The rule is there
to prevent C99 Undefined Behavior (UB) 30 (The program
attempts to modify a string literal) but, for this, the restriction
to pointers to char is unnecessary: assignees that are pointers
to const-qualified (non-char) type are equally good. This
observation is sufficient to justify the deviation for code like
ret = dbgp_bulk_write(dbgp,

USB_DEBUG_DEVNUM,
dbgp->out.endpoint,
"\n", 1, &ctrl);

where the string literal "\n" corresponds to a formal param-
eter of type const void*. Modifying the signature of the
function to take a const char* is undesirable, as this is
only one of its use cases. As this is quite common in Xen,
a tool configuration is used to express a project deviation
whereby the rule is relaxed by allowing a string literal to
be assigned to any const-qualified type. This measure, of
course, relies on compliance with Rule 11.8 (A cast shall
not remove any const or volatile qualification from the type
pointed to by a pointer).

Rule 11.3 (A cast shall not be performed between a pointer
to object type and a pointer to a different object type) is there
to prevent C99 UB 22 (Conversion between two pointer types
produces a result that is incorrectly aligned) and UB 34 (An
object has its stored value accessed other than by an lvalue of
an allowable type). As an exception, the rule allows converting

8https://gitlab.com/xen-project/xen

pointer to objects to pointer to char, as the two UBs do not
apply to such cases. An example of code that violates the rule
can be found in Xen’s x86 emulator, which is a delicate and
carefully crafted piece of code that has been in use for a long
time: it is the typical software module you do not want to
modify unless forced to do so, as the risk of introducing new
defects is quite high.
switch (dst.bytes)
{

case 1: *(uint8_t *)src.reg
= (uint8_t)dst.val; break;

case 2: *(uint16_t *)src.reg
= (uint16_t)dst.val; break;

case 4: *src.reg
= (uint32_t)dst.val; break;
/* 64b reg: zero-extend */

case 8: *src.reg
= dst.val; break;

}

Here, the expressions src.reg and dst.val have type
unsigned long* and unsigned long, respectively,
where unsigned long is 64 bits and has the strictest
alignment requirement among the integer types used in the
example. While case 1 is compliant by the rule’s exception
(uint8_t is a char type), cases 2 and 4 violate the rule. A
static analyzer, such as ECLAIR, that can reliably obtain from
the compiler the alignment constraints of each type allows
locally relaxing Rule 11.3 so as to discount all cases where
alignment is correct and UB 22 does not apply. Exclusion of
UB 34 requires checking that the types used to read and write
the registers are always consistent.

B. Declarations and Definitions

The work on violations of MISRA C Rule 8.4 (A compatible
declaration shall be visible when an object or function with
external linkage is defined) led to some improvements that
reflected positively on the overall code quality of Xen. First,
it pointed out missing header file inclusions in source files
defining several functions: this incurs the risk of definitions
getting out of sync with the respective declarations. Secondly,
this activity uncovered several variables and functions that had
external linkage unnecessarily: these were all changed so as
to have internal linkage, thereby complying with Rule 8.4. A
third line of improvement led to the introduction of a pseudo-
attribute macro asmlinkage, which was first introduced in
the Linux kernel for objects and functions that are meant to
be used only by asm modules. As the need to have external
linkage but are not otherwise used by the surrounding C code,
a suitable tool configuration allows globally deviating them.

C. Preprocessing Directives

Certain C codebases rely heavily on the C preprocessor’s
stringification and token pasting operators to implement rough
(but very convenient) forms of generic programming. As
such operators are associated to undefined and unspecified
behaviors, MISRA C Rule 20.10 (The # and ## preprocessor

https://gitlab.com/xen-project/xen

operators should not be used) advises not to use them. A
project like Xen, which has numerous uses of these operators
in a lot of infrastructure code, has compelling reasons to
deviate this rule. This is completely in line with the spirit
of MISRA C, which supplements advisory Rule 20.10 with
required rules such as Rule 20.12 (A macro parameter used
as an operand to the # or ## operators, which is itself
subject to further macro replacement, shall only be used as an
operand to these operators). Rule 20.12 norms the interaction
of macro arguments and text replacement operators to mitigate
the risk of developer confusion: macro replacement does not
happen when an argument is used as an operand of the #
or ## operators; therefore, if a macro argument is itself a
macro its usage in the macro body as an ordinary argument is
subject to further macro replacement, whereas its usage with
the aforementioned operators does not. Thus, in macros that
violate Rule 20.12 the same argument is expanded in two
different ways, a fact that is prone to being overlooked even by
experienced developers and can go unnoticed during reviews.
This has the potential of silently introducing subtle bugs in
the code that are hard to spot unless the preprocessed code
is manually inspected. Even trickier is the fact that a code
may be as intended in the current project state, but suddenly
become defective if an argument to a macro that is itself not
a macro is later redefined as such. Note that there are also a
few cases where this is deliberate and well-understood, such
as in assertion macros. For instance, this is the definition of
the ASSERT macro in debug builds for Xen:

#define ASSERT(p) \
do { if (unlikely(!(p))) \

assert_failed(#p); } while (0)

These macros can be deviated individually after code review.

D. Essential Type System

MISRA C mitigates the rather weak type system of C by
means of an essential type system whereby C standard types
and C expressions are given an essential type that encodes their
intended use. Every syntactic context in which an expression
may occur has an “expectation” about the essential type
of the expression. Whenever such expectation is unfulfilled,
some MISRA C rule is violated. For instance, the guards of
conditional and iteration constructs expect an expression that
is essentially Boolean: whenever this is not the case, MISRA C
Rule 14.4 is violated.

Rules related to the essential type system are one of the
most critical areas for MISRA compliance: when they are
suddenly introduced into existing projects a very large number
of violations are to be expected. Let us consider MISRA C
Rule 10.1 (Operands shall not be of an inappropriate essential
type): enforcing all the constraints imposed by the rule at
once would be a roadblock to project development but, as
we suggested in Section III, we can filter out provably safe
constructs to allow developers with extensive domain expertise
to sort out the remaining cases.

A very common source of violations of this rule is due to the
freedom with which signed and unsigned quantities are used
within existing codebases. One such case is the following:
align &= -align; // Violates Rule 10.1

The type of align is unsigned int, therefore it has
essentially unsigned type, but it is used as the operand of
the unary minus operator, which expects an essentially signed
operand, whence the violation. As Xen is only meant to run
on architectures using the two’s complement representation
for signed integers, there is no risk for safety, and the code is
equivalent to
align = align & (˜align + 1);

and it has the effect of clearing all bits of align except for
the least significant bit set: there is no way for this operation
to overflow or otherwise give unexpected results, therefore the
rule can be safely deviated in this case. However, the best way
forward is to encapsulate this operation using a macro, since
this is a fairly common pattern throughout the project:
/*
* Given an unsigned integer argument,

* expands to a mask where just the least

* significant nonzero bit of the argument

* is set, or 0 if no bits are set.

*/
#define ISOLATE_LSB(x) ((x) & -(x))

Now the ISOLATE_LSB can be deviated, as far as Rule 10.1
is concerned, and the code above can be rewritten as
align = ISOLATE_LSB(align);

with a clear gain also in terms of readability. Another option,
which would give additional safety due to type checking,
would have been using a static inline instead of a
macro: this was not possible in this case, due to the use of the
construct in contexts where a constant integer expression is
required, most notably the size specifier in (non-VLA) array
declarations (see [23, Clause 6.7.5.2]).

E. Initialization

Failure to initialize objects in C is a serious mistake. Read-
ing an uninitialized automatic variable is undefined behavior,
for which MISRA C has Rule 9.1 (The value of an object
with automatic storage duration shall not be read before it
has been set). In other cases, the language guarantees default
initialization to zero and the issue addressed by the MISRA
guidelines is whether reliance on such default initialization
was intentional or not. An example is given by Rule 9.3
(Arrays shall not be partially initialized). When an array is
partially initialized some of its elements may inadvertently be
left out. The rule has three exceptions for

1) {0} initializers, a common idiom requesting zero-
initialization of all array objects and subobjects;

2) array initializers using designated initializers only;
3) string literal array initializers.

An example of violation in Xen was triggered by an array-
typed field of a struct:

www.embedded-world.eu

struct dmi_system_id {
int (*callback)
(const struct dmi_system_id *d);

const char *ident;
struct dmi_strmatch matches[4];
void *driver_data;

};

In some cases, less than four initializers were given for the
matches array, thereby violating the rule, for example in
{

.ident = "Sun Microsystems Machine",

.matches = {
DMI_MATCH(DMI_SYS_VENDOR,

"Sun Microsystems")
/* <--------------------------->

Violation of Rule 9.3, expanded to
{ DMI_SYS_VENDOR,

"Sun Microsystems" }

*/
},

},

While this was absolutely intentional, the Xen community
agreed on the fact that there was a real danger of omitting
initializers by mistake. It was thus decided to define helper
macros using designated initializers and specifying, in the
macro name, how many elements are initialized. For instance,
the macro specifying that only the first element is initial-
ized and the remaining three elements are intentionally zero-
initialized is
#define DMI_MATCH1(m1) \

.matches = { [0] = m1 }

so that the above fragment can be rewritten as
{
.ident = "Sun Microsystems Machine",
DMI_MATCH1(

DMI_MATCH(DMI_SYS_VENDOR,
"Sun Microsystems")

),
},

which is compliant to Rule 9.3 by its exception 2.

F. Overly Restrictive Guidelines

Some MISRA guidelines impose constraints on code struc-
turing to facilitate reviewers in their assessment of code
correctness. An example is Rule 16.3 (An unconditional break
statement shall terminate every switch-clause). The rationale
of this guideline is to prevent unintended fallthrough in non-
empty clauses due to mistyping or subsequent additions of
clauses. This is particularly important because the switch
statement grammar in C is very liberal,9 whereas MISRA C
attempts restricting it to the discipline of Pascal’s case
statement. In many programming communities the restriction

9Duff’s device is a famous example of what can be achieved thanks to the
flexibility of the switch statement in C: see https://en.wikipedia.org/wiki/
Duff%27s device for details.

imposed by Rule 16.3 is perceived as too strict. Indeed there
are other ways to avoid fallthrough. To start with, return,
goto and continue are as good as break in this respect.
switch (state)
{
case IO_ABORT:

goto inject_abt;
case IO_HANDLED:

/* ... */
return;

case IO_RETRY:
/* ... */
return;

case IO_UNHANDLED:
/* ... */
break;

}
Indeed, break statements placed just after return, goto
or continue would be unreachable, which would violate
MISRA C Rule 2.1 (A project shall not contain unreachable
code).

Another legitimate possibility is allowing non-empty switch
statements to be terminated by calls to functions that have
the _Noreturn function specifier, such as the panic()
function below in the following example:
switch (kinfo->d->arch.vgic.version)
{
/* ... */
default:

panic("Unsupported GIC version\n");
}

One can also manifest the intention of falling through with a
/* fallthrough */ comment or, even better, by defining
a pseudo-keyword, if the compiler supports it as is the case
for the GNU C compiler:10

#if (!defined(__clang__) \
&& (__GNUC__ >= 7))

#define fallthrough \
__attribute__((__fallthrough__))

#else
#define fallthrough \

do {} while (0) /* fallthrough */
#endif

Once fallthrough has been defined this way it can be used
as in
switch (action)
{

/* ... */
case CPU_UP_PREPARE:

INIT_PAGE_LIST_HEAD(list);
fallthrough;

case CPU_DOWN_FAILED:
}

10See https://gcc.gnu.org/onlinedocs/gcc/Statement-Attributes.html for
details.

https://en.wikipedia.org/wiki/Duff%27s_device
https://en.wikipedia.org/wiki/Duff%27s_device
https://gcc.gnu.org/onlinedocs/gcc/Statement-Attributes.html

G. Reachability and Decidable Guidelines

Projects that are highly configurable often need to exclude
certain sections of code from being executed depending on
the build configuration. A popular method that some OSS
projects use to accomplish this is the definition of the build
configuration in a domain-specific language (DSL) that defines
a set of compile-time constants used to conditionally exclude
sections of code.11 A popular choice for the DSL is Kconfig,
which is used by the likes of the Linux kernel,12 the Zephyr
RTOS,13, and the Xen hypervisor.

Suppose a configuration option CONFIG_FOO exists:
if CONFIG_FOO=y in the Kconfig file, then the macro
CONFIG_FOO will expand to 1, otherwise the macro will not
be defined. In addition, a macro IS_ENABLED(x) is defined
so that IS_ENABLED(CONFIG_FOO) evaluates, at compile-
time, to 1, when CONFIG_FOO=y, and to 0, otherwise. This
allows the conditional exclusion of certain code sections in a
way that is easy to understand and fits nicely into the control
structure of the program. Consider the following snippet:

if (IS_ENABLED(CONFIG_PCI_PRI)
&& reg & IDR0_PRI)
smmu->features |= ARM_SMMU_FEAT_PRI;

If CONFIG_PCI_PRI is not enabled, then the compound
assignment statement will not be executed. An alternative way
to write this would be

#ifdef CONFIG_PCI_PRI
if (reg && IDR0_PRI)

smmu->features |= ARM_SMMU_FEAT_PRI;
#endif

This is not entirely equivalent because, in the latter snippet,
the whole if statement is discarded during the preprocessing
phase, while in the former snippet the if statement is still
present after preprocessing in all configurations. The main
disadvantage of the latter approach, and the reason why it
is vehemently opposed by the mentioned OSS communities,
is that it is harder to read and write, especially in the case of
nested #ifdef sections.

We have thus a divergence between the MISRA view that
excluded code should be removed by preprocessing and the
view whereby nothing changes if excluded code is removed
by later compiler translation phases. Note that the divergence
is more serious than it might appear at first sight: decidable
MISRA rules apply to all code that is present after the
preprocessing phase, whether that code is reachable or not.
As such, if the violation of a decidable rule is present in the
first snippet inside the if statement, it must be reported by
any MISRA C analyzer that claims to fully cover the rule.
For undecidable rules the situation is completely different:
for those, the analyzer can, and usually will take reachability

11https://www.kernel.org/doc/html/latest/process/coding-style.html#
conditional-compilation

12https://docs.kernel.org/kbuild/kconfig-language.html
13https://docs.zephyrproject.org/latest/build/kconfig/index.html

switch(x) {
case 1:
f();
break;

if(IS_ENABLED(CONFIG_FOO)) {
case 2:
foo_enabled();
break;

}
default:
break;

}

Fig. 1. Reachable code despite CONFIG_FOO being disabled

into account so that code that is guarded by if(0) does not
contribute to violations.14

Is it possible to reconcile the MISRA view with the one of
projects using IS_ENABLED, also as far as decidable rules
are concerned? Yes, provided that:

1) rules are deviated taking into account the following
points;

2) a guarantee can be obtained that the compiler will indeed
eliminate code that is guarded by if(0) unless jumping
inside it is possible;

3) no jumps inside code excluded by if(0) is possible
from outside.

Point 2 requires checking the compiler documentation and,
possibly, confirming the indications therein with suitable com-
piler validation activities. Regarding point 3, consider the
following example given in Figure 1: there, the second clause
of the switch statement would be excluded from compliance
whenever CONFIG_FOO is disabled, but the clause is still
reachable because x can have the value 2, and therefore
control-flow can jump past the IS_ENABLED check, because
the code is of course still present after the preprocessing phase.
This can have a significant impact on functional safety but,
luckily, complying with a few MISRA rules prevents this
situation. Indeed, if the following rules are fully complied
with, there is no way to jump in the middle of a block and
skip the IS_ENABLED check (or any other condition):

• Required Rule 15.3 (Any label referenced by a goto
statement shall be declared in the same block, or in any
block enclosing the goto statement);

• Required Rule 15.6 (The body of an iteration-statement
or a selection-statement shall be a compound-statement);

• Required Rule 16.2 (A switch label shall only be used
when the most closely-enclosing compound statement is
the body of a switch statement).

Incidentally, this example shows the importance, when defin-
ing a tailoring of the MISRA guidelines, of taking into account
any interdependence among the guidelines and the overall

14We refer the interested reader to [24] for a systematic study of undecidable
MISRA rules.

www.embedded-world.eu

https://www.kernel.org/doc/html/latest/process/coding-style.html#conditional-compilation
https://www.kernel.org/doc/html/latest/process/coding-style.html#conditional-compilation
https://docs.kernel.org/kbuild/kconfig-language.html
https://docs.zephyrproject.org/latest/build/kconfig/index.html

effect of their deviation. This aspect is discussed further in
Section VI-B

VI. DISCUSSION

In this section, we discuss some of the key findings we
(re)discovered in our work on the application of the MISRA
guidelines on existing software, in particular our work on
the Xen hypervisor. Some of the findings are particularly
relevant to OSS, but many apply equally to other software
development models where MISRA compliance is sought for
existing software.

A. Compliance vs Deviation

While it is certain that the judicious application of the
MISRA guidelines to existing projects requires a considerable
number of deviations, it is also the source of many occasions
for improving code quality. During the work on MISRA
compliance for the Xen hypervisor, it has been often the case
that guidelines’ violations pointed to code that maintainers
agreed could be significantly improved. In these cases, the
violations helped identifying better ways of accomplishing
the same task as well as code that has become stale over
time (e.g., certain typedefs or macros that are being gradually
phased out in favor of others). These changes need not be
massive and intrusive, and the community is typically willing
to accept them because of their value. In any case, it is always
a good idea splitting change sets in small chunks that are easy
to review and coherent among themselves (e.g., addressing
violations of one rule at a time, or a small set of tightly-
related rules at a time, in a single file, or in a set of related
files).

B. Interdependence among the Guidelines

Interdependence among the guidelines is another important
issue that must be taken into account during the tailoring
process and when modifying the source code to address
MISRA violations. Interdependence is relevant in two ways:

1) The most straightforward way to address a violation of a
guideline may collide with restrictions imposed by other
guidelines. In this regard, having a CI system in place is
priceless: the submitter can thus be warned in advance
of possible faux pas by committing to a local tree and
automatically perform the analysis to ensure that no new
violations of any guidelines are introduced. This is crucial
to lighten the overall burden on the maintainers’ side, by
not having to think of these interactions (often not trivial
and quite numerous) when reviewing a pull request. This
aspect is elaborated further in Section VI-D.

2) The MISRA guidelines are meant to complement each
other in providing a convincing safety argument. As a
result, even if a guideline is tailored by disregarding some
of its aspects with a sound justification, the guidelines
considered as a whole may not give the same guarantees
as before. An important consequence of this fact is that
the impact of tailoring can only be assessed globally and
not guideline by guideline.

C. The Importance of Tool Configurability

As we observed earlier, successful application of the
MISRA guidelines to existing software requires extensive tai-
loring. This is fully supported by MISRA, thanks to guideline
categorization and its deviation process. However, successful
tailoring crucially depends on the configurability of the static
analysis tool used to check compliance: tailorings that are
not supported by the tool are simply unfeasible. For example,
the MISRA guidelines involving switch statements do not
depend on the type of the controlling expression. However,
a project might wish to tailor MISRA C Rule 16.4 (Every
switch statement shall have a default label) so that switches
controlled by expressions of enumerated types are treated
differently15 but this can only be done effectively if the static
analysis tool supports this differentiation.

Another example regards the possibility of considering code
exclusion based on Kconfig’s IS_ENABLED mechanism the
same way as preprocessor-based conditional compilation: this
is only possible if the static analysis tool has been designed
for high configurability at the outset.

In general, while text-based deviations are essential for
expressing specific deviations, i.e., deviations that apply to
a particular instance at a particular locations, they are bad
for anything else: they do not scale and are particularly
contraindicated for existing software, where you want to
avoid all unnecessary code churn. This, again, requires a high
configurability of the static analysis tool: it has to support
the specification of the exact conditions upon which a certain
deviation applies and the association of its justification to
those conditions. The specifiable conditions may be logical
combinations of syntactic conditions, type conditions and even
semantic conditions on the relevant and surrounding code.

D. The Role of Continuous Integration

During the last decade, the adoption of Continuous Integra-
tion (CI) systems has spread widely in the software industry.
CI systems allow easily keeping the project evolution under
control in a sustainable and scalable way, especially if the
project has a large number of contributors. For large OSS
projects, CI systems provide a first triage for the billions
of code lines from possibly untrusted contributors and help
ensure that the overall code quality is consistent at all times.

Initially, CI systems were intended solely for carrying out
tests, but their flexibility makes them suitable for very generic
tasks: each scriptable operation that is likely to be performed
after a repository-specific event should be triggered by a CI
pipeline in a fully automatic manner. For an effective adoption
of coding standards such as the MISRA one, integrating a
state-of-the-art static analyzer in a CI system is a crucial
ingredient to success.

The repository history holds pretty valuable information,
especially in OSS projects with many occasional contributors,

15E.g., the project might decide not to have a default label in enum-
controlled switches to avoid preventing the useful warning provided by the
GNU C compiler with the -Wswitch option.

who often rely on this information when approaching a task,
as it gives insight into the conventions and constraints adopted
by the project, and their motivations. This includes, of course,
the conventions that are in place for MISRA compliance. All
the new contributions should undergo an analysis by a static
analysis tool prior to their evaluation by the maintainers of the
involved subsystems, so that the tool findings can be addressed
right away, sparing the need for extra review cycles. Only
after receiving positive feedback from the analyzer, will the
contribution be evaluated by the maintainers, making the work
simpler and more accurate thanks to the automation. This
process is often referred to as triaging or gating.

Gating is not as easy as one might think. The meaning
of that word is pretty obvious when it refers to testing
activities (i.e., no test should fail after applying the proposed
modifications), but it is not trivial when we talk about static
analyzers’ findings. Maintainers may decide to accept commits
introducing violations and leave to a later time the decision
whether to deviate or address these findings. The final deci-
sion lies in the hands of the maintainers, supported but not
constrained by the analyzer.

A first possible gating criteria is the number of findings.
Having zero findings with respect to a guideline means that it
is generally accepted by the entire community and effectively
enforced by the maintainers. We likely want to keep the project
clean, so for a selection of truly adopted guidelines we expect
the number of findings not to increase: if that happens, then
it should be investigated why a violation is introduced, and
whether it is desirable to deviate if such a violation is shown
not to impact safety.

Another gating criteria is the introduction of new findings.
A project may contain a considerable amount of findings for
some guidelines that are generally undesired, but with no real
intention of addressing them. In these cases, for the community
it is enough to avoid the introduction of new ones. This is not
equivalent to saying that the number of findings should not
increase, because in this way a commit can introduce new (and
perhaps different) violations if it resolves an higher number.
This criterion requires tools with the ability of recognizing
new findings from those already present in previous analyses,
for instance by comparing their fingerprints. The fingerprint
should be stable and not be affected by minor changes (such
as a report location being moved within a file because of an
unrelated change). This ability is not very common: only static
analyzers that have been designed with that use case in mind
can support this gating criterion.

The integration of a static analyzer into a CI system should
be as smooth as possible for an effective adoption. Providing a
view of the findings in an easy way to all contributors is a key
point: suitable static analysis tools have to support advanced
reporting facilities, like online reports browsing, differential
outputs, and support for the combination of results from
the analysis of the different build configurations. The more
powerful the report browsing is (filters, IDE integration, . . .),
the more likely are contributors to use it. For OSS projects,
a publicly available CI pipeline is essential to discuss the

adoption of rules and address the violations that were found
through static analysis.

Having a MISRA compliance check as part of a project’s
CI system, paired with a set of appropriate gating criteria,
leads to the establishment of a process that can be referred
to as “Continuous MISRA Compliance,” where every time
something is changed, its impact on the overall MISRA
compliance is assessed and recorded in a suitable format.
This is in contrast to the more common paradigm of as-
sessing project compliance only periodically throughout the
development cycle, and typically only when the audit date
is approaching. Reversing this paradigm can lead to a better
estimate of the compliance targets that can be achieved within
a given time frame, and avoid potential pitfalls such as merging
some elaborate and time-consuming code changes, only to
find out later that these subtly introduced a great number
of additional violations that could have been prevented more
easily if they were identified earlier. All this is well known
in the software engineering community [25]: we believe it is
time to systematically leverage the possibilities offered by CI
systems for MISRA compliance as well.

E. MISRA and Open Source Software

It has been argued that MISRA and OSS are not a good
match, but none of the arguments are really convincing. One
of those concerns the fact that key MISRA publications are not
available for free, which is true, but the same applies to the C
and C++ standards, which are actually much more expensive:
nobody thinks that C/C++ and OSS are not a good match
because of that. Moreover, “open-source” is not a synonym
for “resource-less:” many OSS projects are backed up by large
commercial organization that can and do invest money on their
safety-qualification.

Another widely held but unjustified belief concerns the
presumed incompatibility between the discipline required by
MISRA compliance and the governance model of most OSS
projects. Indeed, our experience shows the opposite. In par-
ticular, in OSS projects there is less the attitude “do as you
are told” that you can find in some closed source projects.
While this, on the one hand, can sometimes result in a
slower initial adoption of the MISRA guidelines, the results
attained are often of very high quality. In other words, in
OSS projects, once the message “a MISRA violation is a call
to examine the code critically” has passed, then the critical
examination (as opposed to the blind compliance with the
rule) does really take place and code quality is significantly
improved. Moreover, due to the open nature of the projects,
the discussions and alternatives considered, with their pros and
cons, are often publicly available. This transparency enables
the full traceability of the compliance process, which can
further strengthen the argument of compliance, since the full
evidence of the MISRA compliance process and spirit being
followed can be obtained as a byproduct of the openness of
the development processes.

www.embedded-world.eu

VII. CONCLUSION

In this paper, we have looked at some of the challenges
posed by the need to make existing software compliant with
respect to the MISRA guidelines. We have also illustrated
how such challenges can be tackled successfully by what we
might call “the three Ts”: suitable training of the personnel
involved, judicious tailoring of the MISRA guidelines, and
powerful tooling for their effective enforcement. Even though
our recommendations are based on the experience gained over
several years on a number of projects in different industry
sectors, the paper’s examples are all based on recent work
on the compliance of the Xen hypervisor, and for which all
the results are publicly visible to anyone on the Internet.
While the paper is particularly concerned with open-source
software, most of the recommendations apply to other software
development models.

REFERENCES

[1] M. Neukirchner. (2023, Oct.) The magic touch? How to safety-qualify
open-source software. [Online]. Available: https://linkedin.com/pulse/
magic-touch-how-safety-qualify-open-source-software-neukirchner

[2] R. Bagnara, A. Bagnara, and P. M. Hill, “The MISRA C coding standard
and its role in the development and analysis of safety- and security-
critical embedded software,” in Static Analysis: Proceedings of the 25th
International Symposium (SAS 2018), ser. Lecture Notes in Computer
Science, A. Podelski, Ed., vol. 11002. Freiburg, Germany: Springer
International Publishing, 2018, pp. 5–23.

[3] ——, “The MISRA C coding standard: A key enabler for the develop-
ment of safety- and security-critical embedded software,” in embedded
world Conference 2019 — Proceedings, DESIGN&ELEKTRONIK, Ed.
Nuremberg, Germany: WEKA FACHMEDIEN, Richard-Reitzner-Allee
2, 85540 Haar, Germany, 2019, pp. 543–553.

[4] ISO, ISO 26262:2018: Road Vehicles — Functional Safety — Part 3:
Concept phase. Geneva, Switzerland: ISO, Dec. 2018.

[5] ——, ISO 26262:2018: Road Vehicles — Functional Safety — Part 1:
Vocabulary. Geneva, Switzerland: ISO, Dec. 2018.

[6] D. D. Clark. (1992, Jul.) A cloudy crystal ball: Visions of the future.
Plenary presentation at 24th meeting of the Internet Engineering
Task Force, Cambridge, Mass., 13–17 July 1992. [Online]. Available:
https://groups.csail.mit.edu/ana/People/DDC/future ietf 92.pdf

[7] MISRA, MISRA-C:2012 — Guidelines for the use of the C language
critical systems. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA
MIRA Limited, Feb. 2019, third edition, first revision.

[8] ——, MISRA C:2023 — Guidelines for the use of the C language critical
systems. Norwich, Norfolk, NR3 1RU, UK: The MISRA Consortium
Limited, Apr. 2023, third edition, second revision.

[9] ——, MISRA C++:2023 — Guidelines for the use of C++17 in critical
systems. Norwich, Norfolk, NR3 1RU, UK: The MISRA Consortium
Limited, Oct. 2023.

[10] R. Bagnara, A. Bagnara, and P. M. Hill, “Formal verification of
software architectural constraints,” in embedded world Conference 2023
— Proceedings, DESIGN&ELEKTRONIK, Ed. Nuremberg, Germany:
WEKA FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar, Ger-
many, 2023, pp. 271–279.

[11] ISO, ISO 26262:2018: Road Vehicles — Functional Safety. Geneva,
Switzerland: ISO, Dec. 2018.

[12] CENELEC, EN 50128:2011/A2:2020: Railway applications — Com-
munication, signalling and processing systems — Software for railway
control and protection systems. Brussels, Belgium: CENELEC, Aug.
2020, amendment A2 to EN 50128:2011.

[13] ——, EN 50657:2017/A1:2023: Railway applications — Rolling stock
applications — Software on Board Rolling Stock. Brussels, Belgium:
CENELEC, Nov. 2023, amendment A1 to EN 50657:2017.

[14] IEC, IEC 61508-1:2010: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems.
Geneva, Switzerland: IEC, Apr. 2010.

[15] ——, IEC 62304:2006/Amd 1:2015: Medical device software — Soft-
ware life cycle processes — Amendment 1. Geneva, Switzerland: IEC,
Jun. 2015.

[16] ——, IEC 60335-1:2020: Household and Similar Electrical Appliances
— Safety — Part 1: General Requirements. Geneva, Switzerland: IEC,
Sep. 2020.

[17] RTCA, SC-205, DO-178C: Software Considerations in Airborne Sys-
tems and Equipment Certification. RTCA, Dec. 2011.

[18] R. Bagnara, A. Bagnara, and P. M. Hill, “A rationale-based classification
of MISRA C guidelines,” in embedded world Conference 2022 —
Proceedings, DESIGN&ELEKTRONIK, Ed. Nuremberg, Germany:
WEKA FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar, Ger-
many, 2022, pp. 440–451.

[19] M. Barr, BARR-C:2018 — Embedded C Coding Standard. www.
barrgroup.com: Barr Group, 2018.

[20] R. Bagnara, M. Barr, and P. M. Hill, “BARR-C:2018 and MISRA C:2012
(with Amendment 2): Synergy between the two most widely used C
coding standards,” in embedded world Conference 2021 DIGITAL —
Proceedings, DESIGN&ELEKTRONIK, Ed. Nuremberg, Germany:
WEKA FACHMEDIEN, Richard-Reitzner-Allee 2, 85540 Haar, Ger-
many, 2021, pp. 378–391.

[21] MISRA, MISRA Compliance:2020 — Achieving compliance with MISRA
Coding Guidelines. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA
MIRA Limited, Feb. 2020.

[22] ——, MISRA C:2012 Amendment 2 — Updates for ISO/IEC 9899:2011
Core functionality. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA
MIRA Limited, Feb. 2020.

[23] ISO/IEC, ISO/IEC 9899:1999/Cor 3:2007: Programming Languages —
C. Geneva, Switzerland: ISO/IEC, 2007, Technical Corrigendum 3.

[24] R. Bagnara, A. Bagnara, and P. M. Hill, “Coding guidelines and unde-
cidability,” in embedded world Conference 2023 — Proceedings, DE-
SIGN&ELEKTRONIK, Ed. Nuremberg, Germany: WEKA FACHME-
DIEN, Richard-Reitzner-Allee 2, 85540 Haar, Germany, 2023, pp. 488–
499.

[25] C. Jones and O. Bonsignour, The Economics of Software Quality, 1st ed.
Addison-Wesley Professional, 2011.

https://linkedin.com/pulse/magic-touch-how-safety-qualify-open-source-software-neukirchner
https://linkedin.com/pulse/magic-touch-how-safety-qualify-open-source-software-neukirchner
https://groups.csail.mit.edu/ana/People/DDC/future_ietf_92.pdf
www.barrgroup.com
www.barrgroup.com

	Introduction
	Challenges on the Safety-qualification of Existing OSS
	Possible Approaches to Safety-qualification of Existing OSS
	Retrofitting Safety
	Fork
	Refrain from Safety-qualification

	Role and Scope of this Paper

	MISRA Compliance and Functional Safety
	MISRA Compliance of Existing Code
	Tailoring the Guideline Selection and Individual Guidelines
	Highly Configurable Projects
	The Special Case of Open Source Projects

	The Xen Hypervisor Project
	The Xen Hypervisor Project
	Xen Role in Safety-Critical Systems

	MISRA Compliance of Xen: Selected Highlights
	Pointer Type Safety
	Declarations and Definitions
	Preprocessing Directives
	Essential Type System
	Initialization
	Overly Restrictive Guidelines
	Reachability and Decidable Guidelines

	Discussion
	Compliance vs Deviation
	Interdependence among the Guidelines
	The Importance of Tool Configurability
	The Role of Continuous Integration
	MISRA and Open Source Software

	Conclusion
	References

