
C-rusted: The Advantages of Rust, in C,
without the Disadvantages

(Extended Abstract)
Roberto Bagnara

BUGSENG & University of Parma
Parma, Italy

Email: name.surname@unipr.it

Abramo Bagnara
BUGSENG
Parma, Italy

Email: name.surname@bugseng.com

Federico Serafini
BUGSENG & University of Parma

Parma, Italy
Email: name.surname@bugseng.com

I. THE PROBLEM

The C programming language is a crucial foundation of all
current applications of information technology. It is, by far,
the most used language when access to hardware is essential,
even for critical safety-related and/or security-related systems.

There are very strong economic reasons behind the use of
the C programming language, namely:

1) C compilers exist for almost any processor;
2) C compiled code is very efficient and without hidden

costs;
3) C allows writing compact code thanks to the many built-

in operators and the limited verbosity of its constructs;
4) C is defined by an ISO standard [1];
5) C, possibly with extensions, allows easy access to the

hardware;
6) C has a long history of use, including in critical systems;
7) C is widely supported by all sorts of tools.
In fact, the C programming language is so widespread that

it has no equals as far as the following criteria are considered:
• number of developers in low-level, safety-related and

security-related industry sectors;
• number of qualified tools for compilation, analysis, test-

ing, coverage, documentation, code generation and any
other code manipulation;

• number and range of supported architectures.
On the other hand, several of C’s strong points have negative

counterparts, e.g.:
1) The fact that C code can efficiently be compiled to

machine code for almost any architecture is due to the
fact that, whenever this is possible and convenient, high-
level constructs are mapped directly to a few machine
instructions: given that instructions sets differ from one
architecture to the other, this is why the behavior of C
programs is not fully defined.

2) The reason why the maximum execution time of C
programs can be estimated with good precision by expert
programmers is because there is nothing happening under
the hood and, in particular, there is no built-in run-time
error detection.

3) The reason why C allows writing terse programs is
the same reason why C code that is (intentionally or
unintentionally) obscure is so common.

These negative sides of C compound when memory handling
is concerned, as memory handling is fully under the program-
mers’ responsibility:

1) memory references in C are (unless special care is taken)
raw pointers that bring with themselves no information
about the associated memory block or its intended use;

2) no run-time checks are made to ensure the safety of
pointer arithmetic, memory accesses, and memory deal-
location;

3) code involving memory addressing with pointers can be
particularly opaque to peer review.

Some of the most common C memory issues are:

• dereferencing invalid pointers, including null point-
ers, dangling pointers (pointers to deallocated memory
blocks), and misaligned pointers;

• use of uninitialized memory;
• memory leaks;
• invalid deallocation (including double free and free with

invalid argument);
• buffer overflow.

Even though various coding standards (with MISRA C
being the most authoritative one) and lots of “bug finders”
exist, there is no verification tool that can guarantee, in a
strong sense, the absence of a large class of software defects
in a consistent, effective and repeatable way. In fact:

• MISRA C [2] provides guidelines for writing software
that is on average much safer;

• bug finders find some recognizable instances of possible
defects;

• systems based on deductive methods, like Frama-C [3],
require programmers that are highly skilled in mathemati-
cal logic and, even when such programmers are available,

development time is multiplied by a factor from 2 to 4;1

• deep semantic analysis based on abstract interpretation
only covers a small set of program properties and is
affected by non-repeatable results due to the heuristics
that are used to throttle the computational complexity of
the analysis.

Of course, all this is not new. C criticism for the facility with
which memory handling programming mistakes are committed
date back to shortly after the language was made available to
the public [4]. However, apparently the measure is full if the
idea of rewriting (parts of) Linux in Rust —where committing
such mistakes is significantly more difficult— is being taken
seriously [5], [6], [7], [8], [9], [10], [11], [12]. It is not yet clear
whether a global move to Rust is possible or even desirable.
The main issues are:

• Legacy: there is too much legacy code written in C;
the costs and risks involved in rewriting existing code
bases (a good part of which has a more-than-honorable
operational history and may be in perfectly good shape)
are enormous.

• Personnel: retraining millions of developers to Rust
would take time and lots of resources.

• Portability: for many MCUs used in the development of
embedded systems, no implementation of Rust currently
exists.

• Tools: while all sort of tools are available for C, the same
thing cannot be said for Rust.

So, what does the current ferment about Rust tell us?
That the industry is ready to accept that programmers take
a more disciplined approach by embracing strong data typing
enhanced with program annotations. This is the real change
of perspective: the technology to assist this new attitude in the
creation of C code with unprecedented integrity guarantees is
available, in its essence, since decades.

II. FROM C TO C-RUSTED

In this paper, we propose an alternative approach as a reply
to the temptation of abandoning C in favor of other languages
offering stronger guarantees in terms of safety and security.
The idea is to take some concepts that have been proven to
work well in other languages, such as “the ownership model”
of Rust, into C, in order to define C-rusted: a safe, secure and
energy-efficient flavor of C. The key points of our approach
are the following:

1) C-rusted is based on annotations with which the program-
mer can express:

a) ownership, exclusivity and shareability of language,
system and user-defined resources;

b) properties of resources and the way they evolve during
program execution;

1The reported factor comes from the personal experience of the first author,
who has been trained extensively in mathematical logic up to and including
the Ph.D. level. The same author has also used Frama-C in computer science
courses for several years and found that the learning process is particularly
difficult for students at the bachelor’s and master’s level, despite the fact that
Floyd-Hoare logic played a fundamental role in such courses.

c) nominal types and nominal subtypes compatible with
any standard C data type.

2) As far as the compiler is concerned, all C-rusted annota-
tions are macros expanding to nothing (with the exception
of global annotations, which expand to something that
obeys ISO C syntax and is ignored by the compiler). The
(partially) annotated C programs being fully compatible
with all versions of ISO C, can be translated with
unmodified versions of any compilation toolchain capable
of processing ISO C code.

3) In contrast to (2), a static analyzer can interpret the
annotations and validate the program: if the static analysis
flags no error, then the annotations are provably coherent
among themselves and with respect to annotated C code,
in which case said annotated program is provably exempt
from a large class of logic, security, and run-time errors.

4) It is important to note that it is not only the presence of
annotations that expresses information: even the absence
of annotations has a definite meaning that is checked
by the static analyzer so that any possible oversight or
inconsistency is flagged. This characteristic is used, for
example, to “reverse” some dangerous defaults of the C
programming language: whereas in C an object of type
pointer can be a null pointer, in C-rusted a pointer can
be null only if it is annotated as such.

As a result:
• Legacy code can be reused as-is: for code that is safety-

critical, annotations can be added in order to obtain proofs
of safety, but no rewriting is required, thereby avoiding
all risks that this would entail.

• There is no need to retrain the developers, apart from
those that, working on safety-critical components, would
have to get familiarity with the annotations.

• Existing C compilers can be used without any change,
thereby ensuring maximum portability.

• All sort of tools, in addition to compilers, can also be
used without any change.

III. C-RUSTED AT A GLANCE

Even though the C programming language is (for the sake of
efficiency only) statically typed, types only define the internal
representation of data and little more: types in C do not offer
programmers a way of expressing non-trivial data properties
that are bound to the program logic. For instance:

• an open file has the same type as a closed file;
• a resource or a transaction has the same type indepen-

dently from its state;
• an exclusive reference and a shared reference to a re-

source are indistinguishable;
• an integer with special values that represent error condi-

tions is indistinguishable from an ordinary integer.
In C-rusted all these differences can be expressed incre-

mentally, resulting in increased documentation, readability and
reusability of the code. Most importantly, this enables the
C-rusted Analyzer, which is based on the ECLAIR Software

2

1 #include <fcntl.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4

5 extern void process(char *string);

6

7 int foo(const char *fname, size_t bufsize) {

8 int fd = open(fname, O_RDONLY);

9 char *buf = (char *) malloc(bufsize);

10 ++fd;

11 ssize_t bytes = read(fd, buf, bufsize - 1U);

12 buf[bytes] = '\0';

13 process(buf);

14 return 0;

15 }

Fig. 1. A C program compiling with no warnings with gcc -c -std=c18 -Wall -Wextra -Wpedantic

1 #include <fcntl.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4

5 extern void process(char *string);

6

7 int foo(const char *fname, size_t bufsize) {

8 int fd = open(fname, O_RDONLY);

9 char *buf = (char *) malloc(bufsize);

10 ++fdw1;

11 ssize_t bytes = read(fdw2, bufw3, bufsize - 1U);

12 buf[bytes]w4w5 = '\0';

13 process(bufw6);

14 return 0w7w8;

15 }

w1: After receiving the return value of open(), fd contains a file descriptor or the erroneous value −1: fd cannot be
incremented.

w2, w3, w4, w5: fd is not a valid file descriptor, bytes may be −1, buf may be NULL.
w6: Does process() take ownership, i.e., can it or must it deallocate its argument?
w7: The open file description possibly obtained from open() is leaked here.
w8: The block of memory possibly pointed to by buf is leaked here.

Fig. 2. The C-rusted Analyzer gives several warnings on the same C program

Verification Platform, to verify correctness on any platform,
with any architecture, and for each compiler.

Consider the program in Figure 1, which the GNU C
compiler compiles without any warning even at a very high
warning level. The program contains a lot of likely mistakes,
including the meaningless —but in C perfectly valid— numer-
ical increment of a file descriptor.

When given to the C-rusted Analyzer the very same program
triggers several diagnostic messages, summarized in Figure 2,
where the notation wn decorating a program point means that
the indicated applicable warning is given at that program point.

A much saner version of the program is depicted in Figure 3

and allows us making some observations: while fd is declared
having type int, the value of fd has properties that change
throughout the function body; similarly for buf and bytes.
In other words, the C-rusted type system is able to track how
properties of resources change depending on the considered
program point. The large part of the result is obtained without
any annotation at all, thanks to the fact that the C Standard
Library and the POSIX Library have been annotated once
and for all (and the same can be done with any frequently
used library). Moreover, annotations are not heavy and do not
clutter the code; type qualifiers, such as e_hown(), can also be
embedded in typedefs and a proper choice of typedef names

3

1 #include <fcntl.h>

2 #include <unistd.h>

3 #include <stdlib.h>

4 #include <crusted.h> // Include C-rusted declarations, e.g., for e_hown().

5

6 // The actual parameter must be a valid (hence, non-null) pointer

7 // to a char array in the heap of which process() will take ownership:

8 // the caller must have ownership for otherwise it would be unable to pass it on.

9 extern void process(char * e_hown() string);

10

11 int foo(const char *fname, unsigned bufsize) {

12 int fd; // (The value of) `fd` is indeterminate.

13 fd = open(fname, O_RDONLY);

14 // `fd` is either the erroneous value -1 or an owning reference to an open file description.

15 if (fd == -1)

16 return 1;

17 // `fd` is definitely an owning reference to an open file description.

18

19 char *buf = (char *) malloc(bufsize);

20 // `buf` is either NULL or an owning reference to a heap-allocated char array.

21 if (buf == NULL || bufsize == 0U) {

22 (void) close(fd);

23 // Ownership of the open file description moved from the actual parameter

24 // to the formal parameter of close(), which will close it:

25 // no open file description leak; `fd` cannot be used anymore but it can be overwritten.

26 return 1;

27 }

28 // `buf` is definitely an owning reference to a heap-allocated char array.

29

30 ssize_t bytes = read(fd, buf, bufsize - 1U); // No ownership move, resources are borrowed.

31 // `bytes` is either the erroneous value -1 or the number of bytes read into `buf`.

32 if (bytes == -1) {

33 free(buf);

34 // Ownership of the heap-allocated memory moved from the actual parameter

35 // to the formal parameter of free(), which will deallocate it:

36 // no memory leak, `buf` cannot be used anymore but it can be overwritten.

37 (void) close(fd); // Ownership moved from actual to formal parameter, as in line 22.

38 return 1;

39 }

40 // `bytes` is definitely the number of bytes read into `buf`.

41 buf[bytes] = '\0';

42

43 process(buf);

44 // Ownership of the heap-allocated memory moved from the actual parameter

45 // to the formal parameter of process(), which will deallocate it:

46 // no memory leak, `buf` cannot be used anymore but it can be overwritten.

47

48 if (close(fd) != 0) // Ownership moved from actual to formal parameter, as in line 22.

49 return 1;

50

51 return 0;

52 }

Fig. 3. The C-rusted Analyzer gives no warning on this version

4

also helps readability and understandability.

IV. REFERENCES

The annotation language allows expressing constraints on
the use of resources via references. A resource is anything that
a C program has to manage. Generally speaking, resources
need to be allocated or reserved, need to be manipulated
by operations that have to be performed in some predefined
ordering, and need to be destroyed or deallocated or unre-
served. C-rusted supports different kinds of resources: memory
resources and any language-defined, system-defined or user-
defined abstraction with a definite lifecycle. A reference is any
C expression that is able to refer to a resource. A valid pointer
and a file descriptor are example of references.

A. Owning, Exclusive and Shared References

C-rusted distinguishes between different kinds of references:
Owning references: An owning reference to a resource has a

special association with it. In a safe C-rusted program,2

every resource subject to dynamic release (as opposed
to automatic release, as in the case of stack variables
going out of scope), must be associated to one and only
one owning reference. Through the program evolution,
the owner of a resource might change, due to a mecha-
nism called ownership move, but at any given time said
resource will have exactly one owner. The association
between the owner and the owned resource only ends
when a designated release function is called using the
owner as parameter. Note that an owning reference is a
kind of exclusive reference.

Exclusive references: As the name suggests, an exclusive
reference grants exclusive access to a resource and, as
such, both read and write operations are allowed through
the exclusive reference. As a consequence of this fact,
no more than one usable exclusive reference to the same
resource can exist at any given time; moreover, the
existence of a usable exclusive reference is incompatible
with the existence of any other usable reference to the
same resource. Note that the referred resource cannot be
released via an exclusive non-owning reference (only an
owning reference allows that).

Shared references: A shared reference to a resource can be
used to access the resource without modifying it. As
read-only access via multiple references is well defined,
there may exist several usable shared references to a
single resource. However, during the existence of a shared
reference, no exclusive references to the same resource
can be used.

B. Optionality

In C-rusted an optional type is any type having a subset
of its values that are “reserved” for encoding the occurrence
of some special condition. We refer to these special values as
optional values so that they can be distinguished from others

2We call a C-rusted program safe if the C-rusted Analyzer does not issue
warnings for it.

non-optional values, the ordinary values. A clear example of
optional types are pointer types, having NULL as the optional
value, which encodes the peculiar, though common condition
of a pointer pointing to nothing. The purposes of null pointers
are essentially the following:

• initialization of a pointer-type resource to a known and
comparable value;

• encoding of the fact that a certain condition involving a
pointer-type resource has occurred (often, but not always,
an error condition);

• allowing the definition of recursive data structures.
As programs grow, the proper handling of optional values

and their encoded conditions becomes increasingly difficult.
Some programming languages, such as OCaml and Rust,
include syntactic constructs allowing the explicit declaration
and management of optional types supported by automatic
checks performed statically and/or dynamically. As far as C-
rusted is concerned, support for the handling of optional types
at compile time is offered via e_opt(...) annotations.

1 #define e_opt_hown() e_opt(NULL) e_hown()

2

3 void * e_opt_hown() e_uninit()

4 malloc(size_t size);

5

6 void * e_opt_hown()

7 calloc(size_t nmemb, size_t size);

8

9 void

10 free(void * e_opt_hown() e_release() ptr);

Fig. 4. Ownership and optionality in C Standard Library functions

Figure 4 illustrates the concepts discussed so far by showing
the C-rusted interpretation of some of the C Standard Library
functions that deal with ownership of heap-allocated memory
resources. The e_opt_hown() annotation for the return type
of malloc() and calloc() encodes the following informa-
tion:

1) e_opt(NULL), denoting the fact that an optional value,
i.e., a null pointer, is returned in case of allocation failure;

2) e_hown(), denoting the fact that an owning reference,
i.e., a valid pointer, to a heap-allocated resource is re-
turned in case of allocation success.

Summarizing, the value returned from malloc() and
calloc() is an optional owning reference to a heap-allocated
resource.3 This information is used by the C-rusted Analyzer
to diagnose all occurrences of:

• a dereferencing operation on an optional reference un-
less guarded by a suitable optionality check (typically
encoded by an if statement);

3Note that the C code in Figure 4 is for illustration purposes only: the C-
rusted Analyzer automatically interprets the C Standard Library functions as
if they were declared with suitable C-rusted annotations and does not require
touching the header files provided by the underlying C implementation.

5

• a function call using an optional reference as actual pa-
rameter unless the call is guarded by a suitable optionality
check or the callee’s formal parameter is declared to be
an optional reference as well;

• a return of an optional reference from a function unless
the return statement is guarded by a suitable optionality
check or the function return type is declared to be an
optional reference as well;

• an (optional or non-optional) owning reference going out-
of-scope.

The diagnostic messages require the programmers to con-
centrate on the intended program logic and take appropriate
actions, such as filtering out optional values and/or adding or
amending the annotations. When user-defined functions are
involved, diagnostics may be resolved:

• in the function call, by providing suitable actual param-
eters and destination for the return value;

• in the function declaration, by adjusting the annotations
of the formal parameters and return type and making sure
the function body is coherent with the declaration.

In all cases, this results in increases program readability thanks
to the expressive power of annotations, in particular as far as
function interfaces are concerned. And, when all diagnostic
messages by the C-rusted Analyzer have been addressed, the
effort is rewarded by strong safety and security guarantees by
construction. For instance, optional types are a complete and
effective method for tracking the generation and propagation
of null pointers: together with the ownership model, the avoid-
ance of invalid pointer dereferencing and invalid deallocations
is guaranteed.

Another important aspect of C-rusted is that, unless oth-
erwise specified, all references must refer to initialized re-
sources, thus avoiding uninitialized memory reads. This is the
purpose of the e_uninit() annotation on the return type of
malloc() in Figure 4. As calloc() returns zero-initialized
memory, no such annotation is used for its return type.

As can be seen in Figure 4, free() is the designated func-
tion for the release of heap-allocated memory resources: this
is expressed by the e_release() annotation. In combination
with e_opt_hown(), this means that all calls to free() must
be performed by passing either

• a null pointer (upon which the free() function will do
nothing, as guaranteed by the C Standard), or

• an owning reference to a releasable memory resource.4

Even though C-rusted supports explicit annotations for
exclusive and shared references (via the e_excl(...) and
e_shar(...) annotations, respectively), in many cases such
annotations are not needed and relying on “const correctness”
is sufficient. Namely, the C-rusted Analyzer infers the shared
or exclusive nature of a reference from the presence or absence
of the const qualifier on the referred resource, respectively.
This is illustrated in Figure 5, which contains declarations for a
node (the basic building block of a singly-linked list) and some

4In C-rusted parlance, a resource is “releasable” when it has been properly
finalized and/or it does not contain any valuable or sensible information.

1 #include <crusted.h>

2

3 typedef int T;

4

5 typedef Node_t {

6 T elem;

7 struct Node_t * e_opt_hown() nextp;

8 } Node_t;

9

10 // Shared reference.

11 void node_print(const Node_t *nodep);

12 // Exclusive reference.

13 bool node_insert_after(Node_t *nodep, T elem);

14 // Owning reference.

15 Node_t * e_opt_hown() node_ctor(T elem);

Fig. 5. Different kinds of references

manipulation functions. The node_print() function, which
only needs to read the resource “node” in order to print it,
correctly takes as parameter a reference to a const-qualified
resource: in C-rusted, this is interpreted as an implicit shared
reference. Note that the concept of shared reference is stronger
than const-qualification: while in C the constness only affects
the directly-referred node, in C-rusted the “shareability” (and
the constness property) is recursively propagated down to the
last node of the list. Another crucial aspect is that while
in C the constness of an object can be easily bypassed,
e.g., using pointer casts, in a safe C-rusted program this is
not allowed. Going on with the analysis of Figure 5, the
first parameter of node_insert_after() function (which
modifies the list inserting a new node after the referred one)
is an example of implicit exclusive reference, whereas the
return type of node_ctor(), whose purpose is the acquisition
of a new node, is an optional owning reference. As a final
note on Figure 5, note the inclusion of crusted.h, whose
purpose is simply to ensure all annotations are removed during
the preprocessing translation phase and do not affect the
compilation of the program.

All this has an unmistakable Rust taste, of course, gener-
alized to all kinds of resources (not just memory blocks) and
all kinds of references (not just pointers).

C-rusted annotations allow expressing much more:

• The fact that library and user-defined functions may
encode different information in the same C object. For
instance, the return value of POSIX’s open() is encoded
into an int, which is either −1, in case of error, or it is
a file descriptor.

• Other instances of nominal typing fully under control of
the programmer.

• The way in which functions modify the properties of
resources.

6

V. NOMINAL TYPING

Nominal typing is a restriction placed by strong type systems
whereby two types are compatible only if they have the same
name, independently from their underlying representation. In
the C world this concept is already present in the MISRA C
essential type model [2]: a Boolean is not an integer, even
when it is represented by an int, as it may be the case
in C90 implementations [13], [14]. Similarly, an object of
enumerated type is not an integer, despite being represented by
an implementation-defined integer type. Generally speaking,
nominal typing allows imposing a clear separation between the
C data type representation and the semantics of the particular
type, preventing unwanted and often dangerous operations on
nominal types, such as conversions, arithmetic and bitwise
manipulation.

1 typedef int e_type() e_val(e_geq(0)) fd_t;

2 typedef fd_t e_own() fd_own_t;

3 typedef fd_own_t e_opt(-1) fd_opt_own_t;

4

5 fd_opt_own_t

6 open(const char *path, int oflag);

7

8 int e_val(e_range(-1, 0))

9 close(fd_own_t fildes);

Fig. 6. C-rusted view of open() and close()

Nominal typing is fully supported by C-rusted’s type sys-
tem: as an example, file descriptors are recognized and treated
as nominal types. Figure 6 shows how some functions involv-
ing file descriptors are interpreted within C-rusted: in addition
to the optionality and ownership information conforming to
the POSIX specification, the e_type() annotation is used
to specify that fd_t and all the types derived from it are
nominal types. Resources of type fd_t are file descriptors
and, even if at a C level they are represented using integers,
they have nothing to do with integers. In particular, they cannot
be mixed converting the one to the other, and operations that
are permitted on integers are not permitted on file descriptors.
Moreover, the e_val(...) annotation specifies that:

1) file descriptors are represented by non-negative integers;
2) in case an error occur, open() returns the integer −1

(which is not a file descriptor);
3) close() returns an integer in the interval [−1, 0].

Note that C-rusted also supports annotations to express the file
access mode according to the value of the actual parameter
oflag, which must be given as a compile-time constant. This
allows C-rusted Analyzer checking the validity of operations
involving a file descriptor (such as read() and write()).
In order to keep the example as short as possible, such
annotations have been omitted.

When the power of nominal typing is put into the hands
of programmers, a number of applications emerge that have
the potential of preventing many programming errors. In

Figure 7, four different nominal types related to temperature
scales are defined: Celsius, Kelvin, ∆C and ∆K, all of
them having double as underlying type. This shows how
nominal typing can prevent accidentally mixing different
temperature scales, independently of the underlying C data
types. Therefore, value of nominal types have been con-
strained within the proper ranges and the admitted operations
upon them have been made explicit through e_bop(...)

(for binary operations) and e_uop(...) (for unary opera-
tions), so that only meaningful operations are allowed. For
instance, while celsius_t - celsius_t is admissible as
is kelvin_t - kelvin_t, and these give dltcelsius_t

and dltkelvin_t, respectively, celsius_t / celsius_t

must be flagged because it has no physical meaning due
to the fact that Celsius is not an absolute scale, whereas
kelvin_t / kelvin_t makes perfect sense.

VI. RESOURCE MANAGEMENT

In this section we discuss C-rusted ability to capture the
way in which functions modify the “properties” of resources:
this includes user-defined properties and all sorts of resources.

A. Initialization and Finalization

As already mentioned, in C-rusted all references must
refer to initialized resources unless specified otherwise. This
means that functions that deal with uninitialized resources
must be properly annotated using either e_init(...) or
e_uninit(...). The former is used to annotate function
parameters that are references whose purpose is the initial-
ization of the referred resource: upon entry to the function the
resource may be uninitialized, whereas upon exit the resource
will be definitely initialized (inside the function body, the C-
rusted Analyzer will flag all operations on the referred resource
that precede initialization). The e_uninit(...) annotation is
used to annotate possibly uninitialized resources or references
to possibly uninitialized resource, as in the case of malloc()’s
return type.

An application of such concepts is presented in Fig-
ure 8, where e_init() appears in the annotation of the
channel_ctor() function parameter. While the first call
to channel_send() is flagged by the C-rusted Analyzer
as use of an uninitialized resource, the second call to
channel_send() is perfectly legal as it takes place after a
call to channel_ctor(). Figure 8 also shows the use of the
e_fini() annotation. In line 3, it means that resources of type
channel_t, once initialized, need to be finalized before being
released: failure to do so, as it happens in line 14, triggers a
C-rusted Analyzer message. In line 7, e_fini() identifies the
function in charge of the resource finalization.

Note that, for some resources, finalization is crucial. As
an example, for resources storing confidential information it
is recommended to completely overwrite the used memory
locations in order to ensure such information stays in memory
for the shortest possible time (a release of the resource memory
alone does not achieve that). Of course, in C-rusted a resource

7

1 #include <crusted.h>

2

3 typedef double e_type() e_val(e_geq(-273.15)) celsius_t; // Celsius.

4 typedef double e_type() e_val(e_geq(0)) kelvin_t; // Kelvin.

5 typedef double e_type() dltcelsius_t; // Delta Celsius.

6 typedef double e_type() dltkelvin_t; // Delta Kelvin.

7

8 e_bop(dltcelsius_t, celsius_t, -, celsius_t); // ∆C = C − C.

9 e_bop(dltkelvin_t, kelvin_t, -, kelvin_t); // ∆K = K −K.

10 e_bop(double, kelvin_t, /, kelvin_t);

11

12 void bar(celsius_t c1, celsius_t c2, kelvin_t k1, kelvin_t k2) {

13 dltcelsius_t dltc = c1 - c2;

14 double c_ratio = c1 / c2; // Operation not allowed.

15 double k_ratio = k1 / k2;

16 // ...

17 }

Fig. 7. Nominal types

1 #include <crusted.h>

2

3 typedef struct { /* ... */ } e_fini() Channel_t;

4

5 void channel_ctor(Channel_t * e_init() chanp);

6 bool channel_send(Channel_t *chanp, const char *msg);

7 void channel_dtor(Channel_t * e_fini() chanp);

8

9 int baz(void) {

10 Channel_t c;

11 channel_send(&c, "..."); // Use of uninitialized resource.

12 channel_ctor(&c);

13 if (!channel_send(&c, "Message"))

14 return -1; // Missing finalization.

15 channel_dtor(&c);

16 return 0;

17 }

Fig. 8. Initialization and finalization of resources

that has been finalized is not readable anymore: it can only be
re-initialized or released.

B. Custom Properties

Through annotations, C-rusted allows the programmer to
also express non-trivial data properties that are bound to the
program logic: for example, the C-rusted Analyzer is capable
of ensuring that a set of user-defined operations are performed
in the correct ordering. This is done through the e_in(...)

and e_out(...) annotations expressing preconditions and
postconditions, respectively. An example of this facility is pre-
sented in Figure 9. There, an opaque type struct Mixer_t

(the kitchen tool) is declared along with functions that operate
on a resource of type Mixer_t. Each function declaration

specifies the preconditions that must hold on the referred mixer
to safely carry out the computation and the postconditions that
must hold on the mixer when the function returns to the caller.
In function qux() the contract specified by the annotation is
violated on two accounts. In line 11 there is a violation of
mixer_on() preconditions because the door may be open:
e_in(blade=off) states that it will take in input a reference
to a mixer having the blades turned off, no preconditions
about the state of the door are present. Furthermore, function
qux(), in line 16, is also violating the postconditions of its
own signature: e_out(door=?) states that, upon return, the
door of the passed mixer may be open or closed; nothing is
said about the state of the blade upon return, which implies
the blade return state must be equal to the entry state, i.e., the

8

1 #include <crusted.h>

2

3 typedef struct Mixer Mixer_t;

4

5 void mixer_open(Mixer_t * e_in(blade=off) e_out(door=opened) mxp);

6 void mixer_close(Mixer_t * e_out(door=closed) mxp);

7 void mixer_on(Mixer_t * e_in(door=closed) e_out(blade=on) mxp);

8 void mixer_off(Mixer_t * e_out(blade=off) mxp);

9

10 void qux(Mixer_t * e_in(blade=off) e_out(door=?) mxp) {

11 mixer_on(mxp); // Door may be open!

12 mixer_close(mxp);

13 // Door closed.

14 mixer_on(mxp);

15 // Blade on.

16 return; // Blade still on!

17 }

Fig. 9. Preconditions and postconditions for the safe use of a mixer

blade must be turned off upon return. The problem is that this
is not happening: the programmer has probably forgotten to
call mixer_off() before returning from the function. These
mistakes are reported in the form of compile-time warnings
by the C-rusted Analyzer.

VII. SAFE AND UNSAFE BOUNDARIES

C-rusted allows enforcing information hiding and a
sharp separation between interface and implementation by
means of a flexible access restriction system based on the
e_unsafe(...) annotation, which identifies data types, func-
tions and operations that are “unsafe” on their own or are
considered unsafe because they encapsulate and/or use other
unsafe entities: in this context “unsafe” means “requiring
special care and knowledge in order to ensure safety.”

An example where this is applied concerns the pointers to
the FILE objects used to control the standard I/O streams. The
application programmer obtains such pointers by calling the
fopen() standard function, but these ought to be treated as if
they were not pointer at all: just atomic, unique identifiers
with a NULL special value. If they were implemented as
opaque pointers some of the potential issues (e.g., copies
of a FILE object may not give the same behavior as the
original) would be prevented, but there is no such a guar-
antee. In fact, MISRA C has a mandatory rule that bans
dereferencing pointers to FILE [2, Rule 22.5]. Figure 10
shows how the fopen() and fclose() functions are seen
by C-rusted: the e_unsafe("FILE") annotation ensures that,
by default, all accesses to FILE objects are flagged by the
C-rusted Analyzer.5 Note that the string literal argument in
e_unsafe("FILE") is arbitrary, which allows an unlimited
number of “unsafety kinds.”

5As in the case of open(), for brevity the annotation of fopen() shown
in Figure 10 omits the specification of the file access mode encoded in the
mode actual parameter, which must be given as a string literal.

1 e_decl_props(FILE, e_unsafe("FILE"));

2 typedef FILE * fp_t;

3 typedef fp_t e_own() fp_own_t;

4 typedef fp_own_t e_opt(NULL) fp_opt_own_t;

5

6 fp_opt_own_t

7 fopen(const char * restrict filename,

8 const char * restrict mode);

9

10 int e_val(e_eq(0) || e_eq(EOF))

11 fclose(fp_own_t fp);

Fig. 10. C-rusted view of fopen() and fclose()

For the implementation side, C-rusted provides two
annotations: e_unchecked(...) and e_checked(...).
e_unchecked(...) marks a statement as not expected to
conform to the C-rusted safety and security requirements:
every function containing unchecked statements must thus be
annotated as unsafe. e_checked(...) also marks a state-
ment as not expected to conform to the C-rusted syntax
and semantics, but its use is guaranteed to be safe by the
programmer under every aspect of C-rusted needed warranties.
An example is presented in Figure 11 where, in order to
correctly implement the fclose() function, all the accesses
to a FILE object are encapsulated within the proper safety
annotation as it happens in Line 11. As a result, under the
responsibility of implementers, function fclose() will be
considered as safe by the C-rusted Analyzer.

This model is powerful, flexible and can be used to cover
similar types, such as type sem_t of the POSIX Library, and
user-defined entities, such as the type Channel_t of Figure 8.
For the latter, this will ensure:

9

1 #include <errno.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "local.h"

5 #include <crusted.h>

6

7 int e_val(e_eq(0) || e_eq(EOF))

8 fclose(fp_own_t fp) {

9 // ...

10

11 e_checked("FILE") {

12 if (fp->flags == 0U) {

13 errno = EBADF;

14 return EOF;

15 }

16 }

17

18 // ...

19 }

Fig. 11. Fragment of fclose() implementation with C-rusted annotations

1) the use of the communication channel only through the
safe interfaces;

2) the access to the (delicate) implementation details only
by the channel implementers.

Note how this approach leads to the correct propagation and,
at the same time, the correct encapsulation of (possibly) unsafe
operations within the proper safety checks.

VIII. DISCUSSION

C-rusted is a pragmatic and cost-effective solution to up the
game of C programming to unprecedented integrity guarantees
without giving up anything that the C ecosystem offers today.
That is, keep using C, exactly as before, using the same
compilers and the same tools, the same personnel. . . but
incrementally adding to the program the information required
to demonstrate correctness, using a system of annotations
that is not based on mathematical logic (or other complex
languages) and can be taught to programmers in a week of
training.

This technique is not new: it is called gradual typing, and
consists in the addition of information that does not alter the
behavior of the code, yet it is instrumental in the verification
of its correctness. Gradual typing has been applied with
spectacular success in the past: Typescript has been created 10
years ago, and in the last 6 years its diffusion in the community
of JavaScript developers has increased from 21% to 69%. And
it will continue to increase: simply put, there is no reason for
writing more code in the significantly less secure and verifiable
JavaScript language [15].

For C, a similar approach is the one of Checked C [16].
There, gradual typing is used to extend C with static and
dynamic checking aimed at detecting or preventing buffer
overflows and out-of-bounds memory accesses. Checked C

supports annotations for pointers and array bounds and the
use of static analysis to validate existing annotations and to
infer new ones. Note, though, that Checked C is a different
language than C: while the compilation of Checked C code
requires a special compiler, compilation of C-rusted code is
done with any C compiler.

Figure 12 places C-rusted in its context, between C and
Rust, and summarizes the main elements for a comparison.
Some of these points deserve further explanation.

First, C-rusted is not a new programming language, like
Rust and Zig: C-rusted code is standard ISO C code just
used in a peculiar way and in association with suitable static
analysis techniques.6 As such, C-rusted benefits from the
huge investment the industry has made into C in terms of
compilers, tools, developers, coding standards and code bases.7

For instance, C-rusted is 100% compatible with MISRA C: a
C program that is MISRA compliant can be rusted without
negatively impacting MISRA compliance. Furthermore, an an-
notated C-rusted program validated by the C-rusted Analyzer
has strong guarantees of compliance with respect to guidelines,
such as those concerning the disciplined use of resources, error
handling and possibly tainted inputs, for which compliance is
much harder to achieve and argument in other ways.

Functional safety standards such as ISO 26262 [20] pre-
scribe the use of safe subsets of standardized programming
languages used with qualifiable translation toolchains (see,
e.g., [21] and [22]). Insofar a C-rusted program is a standard
ISO C program where the presence of annotation does not
invalidate MISRA compliance, C-rusted fits the bill as C
does and more, due to the strong guarantees provided by
annotations. Contrast this with Rust and Zig: they are not
standardized and, as a matter of fact, they frequently change
in a way that does not follow a rigorous process. This is
the main reason why qualifying a Rust or Zig compilation
toolchain according to major functional safety standards is,
in the authors’ opinion, impossible today. In contrast, any
qualified C compiler is, as is, a qualified C-rusted compiler.

C-rusted has been conceived for incremental adoption: C
programs can be (partly) annotated so as to express: own-
ership, exclusivity and shareability of language, system and
user-defined resources, as well as properties of resources and
the way they evolve during program execution. The annotated
C-rusted program parts can be validated by static analysis:
if the C-rusted Analyzer flags no error, then the annotations
are provably coherent among themselves and with respect
to annotated code, in which case said annotated parts are
provably exempt from a large class of logic, security, and
run-time errors. C-rusted can thus prevent many resource
management errors: missing allocation, missing initialization,
missing deallocation (resource leak), use after deallocation,

6C-rusted is compatible with any version of the ISO C Standard and can
be used with any C toolchain.

7We note on passing that, in the authors’ opinion, C-to-Rust transpilation
[17], [18], [19] is not a real solution: transpiling well-written C code to
unreadable and unmaintainable Rust code could possibly solve only a small
fraction of the problems at the cost of creating several new problems. This,
however, goes beyond the scope of this paper.

10

C C-rusted Rust
Standardized Yes: ISO Yes: it is ISO C No: moving target
Certifiable translators exist Yes Yes: it is ISO C No
Portability Absolute Absolute Limited
Tool availability Very large Very large Scarce
Developers’ availability Large Large Scarce
Coding standards for safety and security Yes Yes No
Can reuse C legacy code Yes Only in some cases
Strong guarantees on memory resources for annotated programs Yes Yes
Strong guarantees on user-defined resources for annotated programs Yes Yes
Compatibility with unannotated code Yes Yes
Incremental adoption Yes No
Cost of retraining C programmers for unannotated code Zero Significant
Cost of retraining C programmers for annotated code Moderate Significant

Fig. 12. Advantages and disadvantages of C-rusted (along with its C inheritance) and Rust

multiple deallocation, race conditions due to sharing. And this
on all sorts of resources:
Language-defined resources: e.g., memory blocks, stream-

controlling objects, mutexes.
System resources: e.g., open file descriptions, streams, sock-

ets.
User-defined resources: all sorts of transactions, anything

that requires allocation, deallocation and disciplined ex-
clusive and/or shareable use.

Thanks to nominal typing/subtyping and to the tracking of
properties, C-rusted can also prevent other errors not related
to the management of resources, such as the missing detection
of erroneous or anomalous conditions, the use of possibly
tainted input data, and the unwanted disclosure of confidential
information.

C-rusted has been conceived for incremental adoption: new
code that is critical can be created with annotations from the
outset, and this will speed up development because the C-
rusted Analyzer will immediately provide warnings about a
large class of mistakes. Legacy code can be annotated later,
if there is value in doing so, or even left unannotated forever:
touching proven-in-use code with an honorable operational
history makes no sense. Note that annotations are not intrusive:
they can be embedded into typedefs and, for a large part, they
are confined to function prototypes and declarations of structs
containing references.

IX. IMPLEMENTATION

The implementation of the C-rusted Analyzer is based on
the ECLAIR Software Verification Platform.

The static analysis component is formalized in terms of ab-
stract interpretation [23]. The analysis is rigorously intrapro-
cedural, i.e., it is done one function at a time, using only the
information available for that function in the translation unit
defining it, which includes the annotations possibly provided
in function declarations.

The analysis domains include a very precise flow-sensitive
and field-sensitive points-to analysis. Other analyses involve

variable liveness and the tracking of numeric information
through value range analysis based on constraint propagation
over multi-intervals. In addition, there are several finite do-
mains specifically conceived for C-rusted, which track the
state of resources and references as well as the evolution
of dynamic semantic properties. Scalability is ensured by
intraprocedurality.

All the annotations of C-rusted are realized via macro
invocations: the corresponding macros all expand to the empty
token sequence (with the exception of global annotations,
which expand to something that obeys ISO C syntax and is
ignored by the compiler) so that, as far as the compiler is
concerned, after translation phase 4 [1, Section 5.1.1.2] it is
as if they never existed. Of course, the C-rusted Analyzer uses
all the information provided by the annotations before letting
the preprocessor making them vanish.

REFERENCES

[1] ISO/IEC, ISO/IEC 9899:2018: Programming Languages — C. Geneva,
Switzerland: ISO/IEC, 2018.

[2] MISRA, MISRA C:2023 — Guidelines for the use of the C language
critical systems. Norwich, Norfolk, NR3 1RU, UK: The MISRA
Consortium Limited, Apr. 2023, third edition, Second revision.

[3] P. Baudin, F. Bobot, F. Bühler, L. Correnson, F. Kirchner, N. Kosmatov,
A. Maroneze, V. Perrelle, V. Prevosto, J. Signoles, and N. Williams,
“The dogged pursuit of bug-free C programs: The Frama-C software
analysis platform,” Communications of the ACM, vol. 64, no. 8, pp.
56–68, 2021.

[4] D. M. Ritchie, The Development of the C Programming Language.
New York, NY, USA: Association for Computing Machinery, 1996, pp.
671–698. [Online]. Available: https://doi.org/10.1145/234286.1057834

[5] J. Salter, “Linus Torvalds weighs in on Rust language in
the Linux kernel,” Ars Technica, Mar. 2021. [Online]. Avail-
able: https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-
on-rust-language-in-the-linux-kernel/

[6] B. Cantrill, “Is it time to rewrite the operating system in Rust?” InfoQ,
Jan. 2019. [Online]. Available: https://www.infoq.com/presentations/os-
rust/

[7] J. Wallen, “Let the Linux kernel Rust,” TechRepublic, Jul. 2021.
[Online]. Available: https://www.techrepublic.com/article/let-the-linux-
kernel-rust/

[8] S. J. Vaughan-Nichols, “Linus Torvalds on where Rust will fit into
Linux,” ZDNet, Mar. 2021. [Online]. Available: https://www.zdnet.com/
article/linus-torvalds-on-where-rust-will-fit-into-linux/

11

https://doi.org/10.1145/234286.1057834
https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel/
https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel/
https://www.infoq.com/presentations/os-rust/
https://www.infoq.com/presentations/os-rust/
https://www.techrepublic.com/article/let-the-linux-kernel-rust/
https://www.techrepublic.com/article/let-the-linux-kernel-rust/
https://www.zdnet.com/article/linus-torvalds-on-where-rust-will-fit-into-linux/
https://www.zdnet.com/article/linus-torvalds-on-where-rust-will-fit-into-linux/

[9] ——, “Where Rust fits into Linux,” The Register, Nov. 2021.
[Online]. Available: https://www.theregister.com/2021/11/10/where
rust fits into linux/

[10] L. Tung, “Google backs effort to bring Rust to the Linux kernel,” ZDNet,
Apr. 2021. [Online]. Available: https://www.zdnet.com/article/google-
backs-effort-to-bring-rust-to-the-linux-kernel/

[11] M. Melanson, “Rust in the Linux kernel: ‘good enough’,” The New
Stack, Dec. 2021. [Online]. Available: https://thenewstack.io/rust-in-
the-linux-kernel-good-enough/

[12] N. Elhage, “Supporting Linux kernel development in Rust,” LWN.net,
Aug. 2020. [Online]. Available: https://lwn.net/Articles/829858/

[13] ISO/IEC, ISO/IEC 9899:1990: Programming Languages — C. Geneva,
Switzerland: ISO/IEC, 1990.

[14] ——, ISO/IEC 9899:1990/AMD 1:1995: Programming Languages — C.
Geneva, Switzerland: ISO/IEC, 1995.

[15] P. Krill, “TypeScript usage growing by leaps and
bounds — report,” InfoWorld, Feb. 2022. [Online].
Available: https://www.infoworld.com/article/3650513/typescript-usage-
growing-by-leaps-and-bounds-report.html

[16] A. Machiry, J. Kastner, M. McCutchen, A. Eline, K. Headley,
and M. Hicks, “C to Checked C by 3c,” Proc. ACM Program.
Lang., vol. 6, no. OOPSLA1, Apr. 2022. [Online]. Available:
https://doi.org/10.1145/3527322

[17] N. Shetty, N. Saldanha, and M. N. Thippeswamy, “CRUST: A C/C++
to Rust transpiler using a “nano-parser methodology” to avoid C/C++
safety issues in legacy code,” Emerging Research in Computing, Infor-
mation, Communication and Applications, 2019.

[18] M. Emre, R. Schroeder, K. Dewey, and B. Hardekopf, “Translating C
to safer Rust,” Proceedings of the ACM on Programming Languages,
vol. 5, no. OOPSLA, pp. 1–29, 2021.

[19] M. Ling, Y. Yu, H. Wu, Y. Wang, J. Cordy, and A. Hassan, “In Rust
we trust — a transpiler from unsafe C to safer Rust,” in Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 354–355.

[20] ISO, ISO 26262:2018: Road Vehicles — Functional Safety. Geneva,
Switzerland: ISO, Dec. 2018.

[21] ——, ISO 26262:2018: Road Vehicles — Functional Safety — Part 8:
Supporting processes. Geneva, Switzerland: ISO, Dec. 2018.

[22] RTCA, SC-205, DO-330: Software Tool Qualification Considerations.
RTCA, Dec. 2011.

[23] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the Fourth Annual ACM Symposium on
Principles of Programming Languages. Los Angeles, CA, USA: ACM
Press, 1977, pp. 238–252.

12

https://www.theregister.com/2021/11/10/where_rust_fits_into_linux/
https://www.theregister.com/2021/11/10/where_rust_fits_into_linux/
https://www.zdnet.com/article/google-backs-effort-to-bring-rust-to-the-linux-kernel/
https://www.zdnet.com/article/google-backs-effort-to-bring-rust-to-the-linux-kernel/
https://thenewstack.io/rust-in-the-linux-kernel-good-enough/
https://thenewstack.io/rust-in-the-linux-kernel-good-enough/
https://lwn.net/Articles/829858/
https://www.infoworld.com/article/3650513/typescript-usage-growing-by-leaps-and-bounds-report.html
https://www.infoworld.com/article/3650513/typescript-usage-growing-by-leaps-and-bounds-report.html
https://doi.org/10.1145/3527322

	The Problem
	From C to C-rusted
	C-rusted at a Glance
	References
	Owning, Exclusive and Shared References
	Optionality

	Nominal Typing
	Resource Management
	Initialization and Finalization
	Custom Properties

	Safe and Unsafe Boundaries
	Discussion
	Implementation
	References

