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Abstract—The C and C++ programming languages are widely
used for the implementation of software in critical systems. They
are complex languages with subtle features and peculiarities
that might baffle even the more expert programmers. Hence,
the general prescription of language subsetting, which occurs
in most functional safety standards and amounts to only using
a “safer” subset of the language, is particularly applicable to
them. Coding guidelines are the preferred way of expressing
language subsets. Some guidelines are formulated in terms of
the programming language and its implementation only: in this
case they are amenable to automatic checking. However, due
to fundamental limitations of computing, some guidelines are
undecidable, that is, they are based on program properties that
no current and future algorithm can capture in all cases. The
most mature and widespread coding standards, the MISRA ones,
explicitly tag guidelines with undecidable or decidable. It turns
out that this information is not of secondary nature and must be
taken into account for a full understanding of what the guideline
is asking for. As a matter of fact, undecidability is a common
source of confusion affecting many users of coding standards
and of the associated checking tools. In this paper, we recall
the notions of decidability and undecidability in terms that are
understandable to any C/C++ programmer. The paper includes a
systematic study of all the undecidable MISRA C:2012 guidelines,
discussing the reasons for the undecidability and its consequences.
We pay particular attention to undecidable guidelines that have
decidable approximations whose enforcement would not overly
constrain the source code. We also discuss some coding guidelines
for which compliance is hard, if not impossible, to prove, even
beyond the issue of decidability. Findings and lessons learned
are reported along with some concrete suggestions to improve
the state of the art.

I. INTRODUCTION

Coding guidelines are restrictions in the way high-level
programming languages can be used to construct programs.
The role played by such guidelines in ensuring system safety
and security is steadily increasing in importance due to the
following factors:

• the increased criticality of the software-controlled func-
tions in modern systems;

• the sheer complexity and number of traps and pitfalls in
the most commonly used programming languages, such
as C and C++;
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• the consequent ease with which programming errors are
committed.

Due to this, language subsetting, i.e., the prescription to only
use a restricted subset of the language such that the potential
of committing possibly dangerous mistakes is reduced, is
mandated or strongly recommended by the most important
functional safety standards.1 Language subsetting is generally
implemented by the enforcement of coding guidelines.

An important distinction among coding guidelines concerns
those that are only defined in terms of the actual source
code and of the toolchain used to translate it to executable
code,2 and those making reference to other information,
such as requirements, specifications and designs. The former
would be amenable to full automatic checking if it was not
for undecidability: this is a fundamental limitation of any
sufficiently-expressive programming language whereby there
is no general mechanical procedure that can decide whether or
not a program has certain properties. Undecidable properties
are those that cannot be decided by a general mechanical
procedure, i.e., they cannot be implemented by an algorithm.

Among the undecidable properties are all the more inter-
esting ones, those that every software engineer would want to
decide: the presence or absence of buffer or numeric overflows,
invalid pointer dereferences, divisions by zero, . . . , they are
all undecidable. As a result, guidelines that only depend on
the source code and on the language implementation are
further subdivided into decidable guidelines, those that, at least
in principle, can be verified automatically, and undecidable
guidelines, those that cannot.

It is not difficult to give a rule of thumb for recognizing
decidable guidelines: they only depend on program properties
that are known at compile time, like

• the types of the objects;
• the names and the scopes of identifiers;
• syntactic properties of the source code, like the presence

of goto’s.

1Such as IEC 61508 [1] (industrial, generic), ISO 26262 [2] (automotive),
CENELEC EN 50128 [3] (railways), RTCA DO-178C [4] (aerospace) and
FDA’s General Principles of Software Validation [5] (medical devices).

2For example, C99 has 112 implementation defined behaviors [6] and C18
has 119 [7]. These influence so many aspects of source code interpretation that
we can say C source code cannot be assigned any meaning unless full details
are available on the implementation-defined behaviors of the used translation
toolchain.
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On the other hand, a guideline is almost certainly unde-
cidable if it depends on conditions that are only known at
run-time, like

• the values contained in modifiable objects;
• whether control reaches particular points.

Decidability has deep consequences on automatic analysis
techniques, particularly on static analysis. For decidable guide-
lines, it is theoretically possible (i.e., modulo the availability of
sufficient computational resources) for a tool to emit a message
if and only if the rule is violated. In contrast, for undecidable
guidelines, any tool will have to implement an approximated
decision algorithm, that is, one that only in some cases can
provide a yes/no answer and in the remaining cases gives a
don’t know answer. Not all tools have implementations match-
ing this level of sophistication (which is indeed challenging
for reasons that go beyond the scope of this paper). In fact,
several tools only provide yes/no answers implying that, in
reality, they are unable to recognize the don’t know cases. So
what they do is either:

• they keep silent in cases where there can actually be a
violation: these have false negatives and are unsuitable to
safety- or security-related development;

• they emit violation messages in cases where there may
not be a violation: these have false positives but no false
negatives, so they can be used for safety- and security-
related development even though, if there are too many
false positives, effectiveness of the tool is low;

• a combination of the above, for tools having both false
negatives and false positives.

Due also to these aspects, tool users are often confused about
undecidable guidelines and how tools report their possible
violation.

In this paper, we study the relationship between undecid-
ability and coding guidelines in widely-used coding standards.
We focus particularly on MISRA C, which is the most author-
itative and most widespread subset for the C programming
language [8]. MISRA C, whose first edition was published in
1998 [9] and directed to the automotive industry, has become
a de facto standard for the development of high-integrity and
high-reliability systems in all industry sectors. The intended
audience for this paper is constituted by:

• users of coding standards and of tools supporting them;
• organizations defining coding standards;
• producers of tools supporting coding standards.

The paper is structured as follows: Section II introduces
undecidable program properties in a way that is accessible to
every software developer; Section III illustrates undecidable
MISRA C:2012 guidelines and classifies them according to
their nature and the techniques with which they can or cannot
be checked; Section IV focuses on guidelines concerning
unreachable and “dead” code, which have peculiarities distin-
guishing them from other undecidable guidelines; Section V
discusses the findings of this research work, makes some con-
crete proposals for improvement, and draws some conclusions

on the desirability of undecidable guidelines vs decidable ones;
Section VI wraps up.

II. UNDECIDABLE PROGRAM PROPERTIES

A function is said to be computable if there exists an
algorithm that, given enough resources, will always produce
the correct output for each given input.3 For simplicity, let us
consider functions with one input, a natural number, and a
Boolean output where we use 1 as the representation of true
and 0 as the representation of false. The function e : N → N
given by

e(x) =

{
1, if x is even,
0, if x is odd,

is clearly computable. It is important to observe that the
condition for computability is the existence of the algorithm,
independently from the fact that we have the algorithm and we
know how to implement it. Consider the following functions:

f(x) =


1, if exactly x consecutive ‘5’s appear

in the decimal expansion of π,
0, otherwise;

g(x) =


1, if at least x consecutive ‘5’s appear

in the decimal expansion of π,
0, otherwise.

Function g : N → N is computable: it is either the function
that always gives 1 (if the decimal expansion of π contains
sequences of consecutive ‘5’s of any length), i.e.,

g(x) = 1, (1)

or there exists k ∈ N such that

g(x) =

{
1, if x ≤ k,
0, if x > k.

(2)

In the first case an algorithm computing g is the following,
where natural is a type that encodes natural numbers:

natural g(natural x) {
return 1;

}

In the latter case an algorithm computing g has the form

natural g(natural x) {
return (x <= k) ? 1 : 0;

}

3This section contains a drastic simplification of a small part of what is
presented in any standard university course on Turing-computability. All the
mentioned results are well known since the early 1950’s and the main ideas
were established in the 1930’s thanks to the work of Gödel, Church, Péter,
Turing, Kleene and Post [10].



The fact that we do not know yet4 which is the right algorithm,
i.e., whether there exists k such that (2) holds or, instead,
whether (1) holds, does not really matter: g is computable.

The same thing cannot be said for function f : its shape may
be so complex, jumping back and forth from 0 to 1 in a way
that no algorithm can capture, or maybe the jump pattern is
expressible by an algorithm: we simply do not know yet.4

Let us consider a generic programming language and let P
be the infinite set of all its programs. Let also I be the infinite
set of all inputs for the programs in P. For a program P ∈ P
and a possible input I ∈ I, a program property is a statement
of the form “program P [predicate] when run with input I .”
Examples of predicates are:

1) has 3 if-then-else’s;
2) terminates;
3) divides by zero;
4) does not terminate.
5) does not divide by zero.

For each P ∈ P and each I ∈ I let p(P, I) mean “P has
property p when run on input I .” Let us call p1, . . . , p5 the
properties corresponding to examples 1–5 in the enumeration
above, e.g., p2 is “P terminates when run on input I .”

For a property p, let us consider the decision function for
p, which we will denote by ϕp: it takes a program P (any
one in P), an input I (any one in I), and responds with 1 if
program P has property p when run on I; it responds with 0
otherwise. More formally ϕp : P× I → N is defined, for each
P ∈ P and each I ∈ I, by

ϕp(P, I) =

{
1, if p(P, I) holds,
0, otherwise.

(3)

We say that p is decidable if and only if ϕp is computable.
Observe that p1 is clearly decidable: an implementation of ϕp1

will disregard input I completely, and inspect P to count the
if-then-else’s, returning 1 if P has exactly 3 of them and 0
otherwise.

What about p2? Program termination is notoriously unde-
cidable for all sufficiently expressive programming languages,
such as C, Pascal, Python, and all general-purpose languages:
these languages are called Turing-equivalent and have the
property that, if a function is computable at all, then it is
computable by a program written in any of those languages.

To see that p2 is undecidable, consider the following argu-
mentation in a subset of the C programming language where
we fixed all the implementation-defined behaviors. Let C be
the subset of C programs where:

1) we systematically avoid all unspecified behaviors by the
use of temporary variables and sequence points;

2) we systematically define, in an arbitrary way, all unde-
fined behaviors.

For example, to fix the implementation-defined behaviors,
let us say something like “we stick to the dialect of C18

4Unless a new result in number theory has been published after this paper
was written.

#include <stdio.h>
/* Returns 1 if P points to the name of a file

containing a valid restricted C program source
that terminates when called with the input
contained in the file whose name is pointed
to by I; returns 0 otherwise.
The function works perfectly for every
combination of its inputs and always returns
the correct result in finite time. */

int halts(const char *const P,
const char *const I) {

/* ... */
}

int main(int argc, char **argv) {
const char * const P = argv[1];
while (halts(P, P)) {
printf("%s will terminate on %s\n", P, P);

}
printf("%s will not terminate on %s\n", P, P);
return 0;

}

Fig. 1. Source file halt.c, with the impossible-to-write function halts()
and a main program exercising it

implemented by GCC version v for target z with a fixed set
of options including -std=c18 and -pedantic-errors.
For an example of point 1, we never write something like
z = f() + g(); instead, we write, e.g.,

{
T1 x = f();
T2 y = g();
z = x + y;

}

where T1 and T2 are the return types of f() and g(),
respectively. For an example of point 2, we never use integer
division directly, as in z = x / y; instead, we write, e.g.,

int intdiv(int a, int b) {
return (b == 0) ? 0 : (a / b);

}
...
z = intdiv(x, y);

and we always use intdiv() when dividing two quantities
of (promoted) type int. Note that we are in no way restricting
the expressive power of the language: a program relying on
unspecified or undefined behavior is ill-formed anyway [7].

Now suppose, towards a contradiction, that we can actually
implement ϕp2

, that is, we can implement in C a function
that, given any program P and any input I , will give 1 if
P terminates on I and will give 0 if P does not terminate
on I . This amounts to say that we are able to complete the
body of function halts() in Figure 1 so as to implement its
specification. However, if halts() can be written in C then
it can also be called in C in the way indicated in the same
figure. Then we can compile the program and execute it as
follows:

$ gcc -std=c18 ... halt.c -o halt.exe

www.embedded-world.eu



#include <stdio.h>
/* Returns 1 if P points to the name of a file

containing a valid restricted C program source
that performs a division by zero when called
with the input contained in the file whose name
is pointed to by I; returns 0 otherwise.
The function works perfectly for every
combination of its inputs and always returns
the correct result in finite time. */

extern int divbyzero(const char *const P,
const char *const I);

int halts(const char *const P,
const char *const I) {

/* Modify program in P by (1) replacing all
divisions by zero with equivalent code, and
(2) adding a statement performing a division
by zero just before any of its explicit or
implicit return points; write the resulting
program in a file whose name is contained
in P1. */

const char *P1 = NULL;
/* ... */
return divbyzero(P1, I);

}

Fig. 2. Deriving a decision procedure for termination from a decision
procedure for division by zero

$ halt.exe halt.c

For the indicated execution of halt.exe there are only two
possibilities:

1) The program prints
halt.c will terminate on halt.c
halt.c will terminate on halt.c
... [infinite repetitions]

so that in fact it will not terminate!
2) The program prints

halt.c will not terminate on halt.c

but it has just terminated!
We reached a contradiction in both cases, meaning that the
function halts() cannot be written. Note that it is not just
a matter that we do not know how to write it, we simply
cannot: we will never be able to write it.

It can be proved that all non-trivial semantic properties
of programs are undecidable: these are all properties that
depend on the contents of writable memory locations and/or
on the fact that a certain program point can be reached or
not. Take division by zero, for instance: if we were able
to implement ϕp3

, say, with a C function divbyzero(),
then we would be able to implement halts() as shown
in Figure 2. As halts() cannot be implemented, also
divbyzero() cannot. The same holds for all non-trivial
program properties: absence of buffer overflows and any other
run-time error, reachability of program points and so on.
The proofs of these can all be obtained as variations of the
argument presented here: let the bad thing happen if and
only if the program terminates on the given input. In this
sense termination can be called “the father of all undecidable

problems.” However, termination is semidecidable, meaning
that the following function is computable:

ψp2
(P, I)

{
= 1, if P terminates in input I ,

undefined, otherwise.

The algorithm is simple: run P on input I; if and when
termination takes place, return 1; otherwise keep executing P
on I . Undecidability of termination implies that, in general,
we cannot do better then that. But consider the property p4 of
non-termination: this is not even semidecidable: in general, at
no point in time are we allowed to conclude that, having not
observed termination, termination cannot take place later. The
same holds for the property p5 of non-division-by-zero. Worse
than that, as the program input cannot typically be known in
advance, the properties we are interested in are the universal
ones, that is, instead of ϕp of (3), we would need

υp(P ) =

{
1, if p(P, I) holds for each I ∈ I,
0, otherwise.

(4)

Of course, if ϕp is not computable, υp is also not computable.
Thus, if a property is undecidable, its universal counterpart is
also undecidable. Take termination: its universal counterpart
is called universal termination and a program universally
terminates if it terminates for each input. Universal termination
not only is undecidable, but would remain undecidable even if
we had an oracle for ordinary termination, that is, if we had
some sort of magic behaving like ϕp2

: this would not help as
there typically are infinitely many inputs for a program.

Finally, the fact that universal termination is undecidable,
allows us to easily prove that program equivalence is also
undecidable. Figure 3 shows how a decision procedure for
program equivalence could be turned into a decision procedure
for universal termination.

III. MISRA RULES AND UNDECIDABILITY

MISRA rules are explicitly classified as decidable or unde-
cidable according to whether answering the question “Does
this program comply?” can be done algorithmically. All
the considerations of the previous section apply, taking into
account that all MISRA guidelines are based on universal
program properties.

Out of the 199 guidelines in MISRA C:2012 Revision 1
with Amendments 2 and 3 [8], [11], [12], 181 are rules, that
is, guidelines such that information concerning compliance is
fully contained in the source code and in the implementation-
defined aspects of the used C language implementation. Of
the 181 rules, 40 are undecidable, of which 12 are mandatory,
23 are required, and 5 are advisory.5 Table I provides a
synopsis of such undecidable rules. It contains one row for
each rule, whose identifier is written in boldface if mandatory,
in italics if advisory, or in normal font if required. For each

5MISRA-compliant code must follow mandatory guidelines: deviation is
not permitted. MISRA-compliant code shall follow every required guideline:
a formal deviation is needed where this is not the case. Advisory guidelines
are recommendations that should be followed as far as is reasonably practical.
See MISRA Compliance:2020 [13] for details.



TABLE I
SYNOPSIS OF THE UNDECIDABLE RULES IN MISRA C:2012

flow
undecid.

numeric
undecid.

pointee
undecid.

side eff.
undecid.

flow ins.
approx.

type
approx.

other
approx.

coverage not
provable

definition
issues

Rule 1.2 x
Rule 1.3 x x x x
Rule 1.5 x x
Rule 2.1 x x
Rule 2.2 x x x
Rule 8.13 x ◦◦◦
Rule 9.1 x x ◦
Rule 12.2 x x
Rule 13.1 x x ◦ ◦◦◦
Rule 13.2 x x x ◦ x
Rule 13.5 x x ◦ ◦◦◦
Rule 14.1 x x ◦
Rule 14.2 x x x ◦
Rule 14.3 x x
Rule 17.2 x x ◦
Rule 17.5 x x
Rule 17.8 x x ◦◦◦
Rule 17.9 x ◦◦◦
Rule 17.11 x ◦◦
Rule 18.1 x x x
Rule 18.2 x x ◦
Rule 18.3 x x ◦
Rule 18.6 x x ◦
Rule 19.1 x x ◦
Rule 21.13 x x ◦◦
Rule 21.14 x x ◦◦
Rule 21.17 x x x
Rule 21.18 x x x
Rule 21.19 x x ◦◦
Rule 21.20 x x
Rule 22.1 x x ◦
Rule 22.2 x x ◦
Rule 22.3 x x
Rule 22.4 x x ◦◦
Rule 22.5 x ◦◦
Rule 22.6 x ◦
Rule 22.7 x ◦◦
Rule 22.8 x ◦◦
Rule 22.9 x ◦◦
Rule 22.10 x ◦◦

rule, information is summarized in the following columns:

flow undecid. for rules whose undecidability directly depends
on the tracking of control-flow;

numeric undecid. for rules whose undecidability directly de-
pends on the tracking of numeric values;

pointee undecid. for rules whose undecidability directly de-
pends on the tracking of pointee addresses;

side effects undecid. for rules whose undecidability directly
depends on the tracking of side effects;

flow ins. approx. for rules admitting useful flow insensitive,
sound approximations;

type-based approx. for rules admitting type-based, sound
and decidable approximations;

other approx. for rules admitting decidable approximations
using other techniques;

coverage for rules whose compliance can only be checked by
dynamic analysis and tracking of test coverage;

not provable for rules such that compliance is generally not

provable, either programmatically or manually;
definition issues for rules whose definition has issues dis-

cussed in this paper.

In the columns labelled as approximations, the approximability
is classified using notations ‘◦’, ‘◦◦’ and ‘◦◦◦’. The number
of ‘◦’s in the notation indicates how easy it would be for
the developers to satisfy the extra requirements due to the
approximation. That is:

• A single ‘◦’ indicates an approximation having occa-
sional violations whose avoidance is troublesome and/or
seriously limiting the developers. Deviation might be
appropriate.

• A ‘◦◦’ indicates an approximation such that avoiding
violations would need some care and possibly some
rewriting, but that leads to better and provably correct
code. Deviation might be considered as an alternative to
refactoring.

• A ‘◦◦◦’ indicates an approximation where deviating

www.embedded-world.eu



#include <stdio.h>
/* Returns 1 if P1 and P2 point to the name of

files containing two valid restricted C program
sources that have the very same behavior for
each input.
The function works perfectly for every
combination of its inputs and always returns
the correct result in finite time. */

extern int equiv(const char *const P1,
const char *const P2);

int always_halts(const char *const P) {
/* Modify program in P by adding a "return 1"

statement just before any of its explicit or
implicit return points; write the resulting
program in a file whose name is contained
in P1. */

const char *P1 = NULL;
/* ... */
/* Set P2 to the name of a file containing

the program "int main() { return 1; }". */
const char *P2 = NULL;
/* ... */
return equiv(P1, P2);

}

Fig. 3. Deriving a decision procedure for universal termination from a
decision procedure for program equivalence

violations is never recommendable and fixing the code
is straightforward.

Consider the following MISRA C:2012 rule:

Rule 22.5: A pointer to a FILE object shall not be
dereferenced

The reason why this rule is flow undecidable is its flow
sensivity, meaning that the rule is not violated if a pointer
to a FILE object is dereferenced in unreachable code:

FILE *p;
/* ... */
if (always_false_in_this_configuration(/* ... */) {

FILE f = *p; // Unreachable: not a violation.
}

The obvious flow-insensitive, decidable approximation consists
in flagging all dereferences of pointers to FILE objects
independently from reachability. In this and other cases, flow
sensitivity (ubiquitous in undecidable rules as you can see in
Table I) does more harm than good: in the example above,
the reason that Rule 22.5 is not violated is because the then
branch is unreachable. What is the point of this exemption? In
fact the unreachable code is in violation of Rule 2.1 (discussed
in Section IV).

For another example, consider the following guideline:

Rule 17.8: A function parameter should not be
modified

This is undecidable for two reasons. The first is, again, flow
sensitivity: a modification happening on a branch that is not
reached is not a violation. Consider the following

Example 1:

void f(uint32_t x) {
if (x < 0) { // If always x >= 0 on entry...

x = 0; // ... Rule 17.8 is not violated.
}
/* ... */

Flow sensitivity is not the only cause of undecidability for
Rule 17.8. Consider the following

Example 2:

extern void g(uint32_t *p);

void f(uint32_t x) {
/* ... */
g(&x); // Rule 17.8 violation?
/* ... */

Knowing whether Rule 17.8 is violated depends on knowing
whether function g() modifies the pointee of the argument
it received on input, which also depends on the tracking of
pointee addresses, and this is undecidable. In this and other
cases, the authors of this paper believe that the latitude allowed
by undecidability has insufficient rationale. This is why, for
several rules, Table I goes beyond crossing flow insensitive
approximation by crossing type approximation. We call “type
approximation” one that can be expressed in a stricter type
system than the standard C type system.6 Note that static
type approximations are, by definition, flow insensitive and
decidable.7 Concerning Rule 17.8, a sensible type approxima-
tion would go along the lines “Function parameters should be
considered as read-only.” A static analyzer can clearly check
this, in particular by checking that no explicit and implicit casts
can circumvent the writing prohibition, and flag the violation
in Example 2.

We will now go through other rules in Table I, explaining
their classification and their relationship with undecidability.

Rule 1.2: Language extensions should not be used.
The rationale of Rule 1.2 is that programs relying on exten-
sions will be difficult to port to a different language implemen-
tation. In addition, extensions make compiler qualification,
as mandated by functional safety standards, more expensive,
as it requires in-house development of test cases for the
extensions [16].

An interesting thing about Rule 1.2 is that it is the only
MISRA C:2012 rule that is tagged both as Undecidable and
Single Translation Unit, meaning that all violations involve

6This notion is not new to MISRA C practitioners: MISRA C:2012 essential
type model along with the guidelines that are based on it, define a type system
which is stronger than the C type system.

7Static typing is in contrast with flow-sensitive typing, where the type of
expressions may depends on their position in the control flow. In flow-sensitive
type systems, the type of an expression may be updated to a more specific
type following an operation validating the subtype. For example, just after
p = malloc(sizeof(int)) the type of p may be an encoding of “null
pointer or pointer to the beginning of a block in the heap”, but within the
then branch of a subsequent if-then-else guarded by p != NULL, the type
of p may be updated to “pointer to the beginning of a block in the heap.” The
Rust language and the C-rusted dialect of C, which we will mention later in
the paper, are based on flow-sensitive typing [14], [15].



a single translation unit only, i.e., the compiler and not the
linker. However, the point with language extensions is that,
by definition, they are not known in advance. Consider the
following C fragment:

extern void f(char *p);
void g(void);

void g(void) {
char a[9] = {};
return f(a);

}

This contains an empty initializer and returning of a void
expression, which are undefined in all versions of the C stan-
dard. Nonetheless the GCC documentation does not document
them as extensions.8 Can an undocumented compiler feature
be accepted as a legitimate language extension? Probably not:
as the presence of documentation is crucial and checking that
is a human activity, Rule 1.2 should probably be a directive.

Rule 1.3: There shall be no occurrence of undefined
or critical unspecified behaviour

Rule 1.3 covers all undefined and critical unspecified behaviors
that are not covered by other rules: there are many of them,
so the crosses given in the corresponding row in Table I
represents a summary.

Rule 8.13: A pointer should point to a const-
qualified type whenever possible

The reason why Rule 8.13 is undecidable is that the missing
const qualification might impact on code that is unreachable.
As unreachable code is flagged by Rule 2.1 (see Section IV),
the rationale for accepting undecidability is weak. We believe
the stronger, decidable version, would be more useful without
constraining programmers too much; hence in Table I, in the
column labeled type-based approx., the rule has ‘◦◦◦’.

Rule 9.1: The value of an object with automatic
storage duration shall not be read before it has been
set

Missing initialization of automatic variables is the origin of
many defects and vulnerabilities. Rule 9.1 is undecidable
because it rules out reading uninitialized stack cells: capturing
this with high precision in static analysis is challenging,
especially when arrays are involved. The rule, however, has
sensible decidable approximations. The simplest one is to
“always initialize automatic variables at declaration time.” This
is less extreme than it might seem: MISRA C:2012 itself
hints at this direction when defining Rule 2.2 (which will be
examined in Section IV), by specifiying that initializations may
be kept even when redundant. Most importantly, wholesale
initialization of automatic variables is now optionally imple-
mented by major compilers (GCC from version 12, Clang from
version 8), with at most negligible slowdowns and speedups

8See https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html, last accessed
and checked on October 6, 2022.

in some cases [17], [18], [19].9 It is interesting to note how, in
front of an important rule that is targeted by basically all bug
finders (with false negatives and/or false positives due to the
rule undecidability), a very speed-sensitive community like the
one revolving around the Linux kernel is seriously considering
the systematic use of such options.

Rule 14.1: A loop counter shall not have essentially
floating type

This rule, together with Rule 14.2, aims at introducing in C a
sort of determinate iteration construct like Pascal’s FOR loop-
ing construct.10 This ideal, which is not completely achieved,
rests on restrictions that are applied to C’s for loops. As
the restrictions are semantic in nature, both Rule 14.1 and
Rule 14.2 are undecidable. The type restriction given in the
headline of Rule 14.1 might be surprising, as static type
restrictions are decidable. The undecidability is due to the
specification of loop counter: a loop counter is variable
that satisfies three conditions, two of which are undecidable
[8, Section 8.14]. Syntactic, fully decidable restrictions are
of course possible and would have the advantage of fully
achieving the goal of having determinate iteration in C.

Rule 17.2: Functions shall not call themselves, either
directly or indirectly

There are two reasons why this rule is undecidable: flow sen-
sitivity and function pointers. A variant that is flow insensitive
and forbids the use of function pointers would be decidable.
When function pointers are needed to implement, e.g., call-
backs, a type-based approximation (effectively limiting the
use of function pointers so that recursive calls via them are
impossible) would be decidable and would cover most cases
that occur in embedded system programming.

Rule 21.13: Any value passed to a function
in <ctype.h> shall be representable as an
unsigned char or be the value EOF

Undecidability of this rule comes, besides flow-sensitivity,
from the undecidability of value tracking. A type-based ap-
proximation, where the static analyzer enforces constraints on
a type only capable of representing the value EOF and those
representable by an unsigned char, provides a decidable
way of ensuring compliance.

Rule 21.14: The Standard Library function memcmp
shall not be used to compare null terminated strings

This is undecidable for the same reasons as Rule 21.13 and
the same discussion applies. Indeed, null-terminated strings
deserve not just a fictitious type that only manifests itself
within the static analyzer: they deserve an explicit typedef
name so that developers are very aware when they manipulate
null-terminated strings and not ordinary character arrays.

9The reason for the occasional speedups sems to be that systematic zero-
initialization improves superscalar execution in the CPU due to the breaking
of dependencies.

10A determinate iteration construct is one such that the maximum number
of iterations is known before the first iteration begins. None of the looping
constructs of C have this property.
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Rule 21.19: The pointers returned by the Stan-
dard Library functions localeconv, getenv,
setlocale or, strerror shall only be used as
if they have pointer to const-qualified type

The very same approach described for Rule 17.8 can be used.11

Rule 22.1: All resources obtained dynamically by
means of Standard Library functions shall be ex-
plicitly released

For this rule as well as Rule 22.2 it is possible to use an
ownership model similar the one implemented in Rust [15]
and based on flow-sensitive typing. This is what is done in
C-rusted [14].

Rule 22.3: The same file shall not be open for
read and write access at the same time on different
streams

The problem with this rule is that it cannot be checked
automatically well beyond the problem of undecidability. The
notion of being “the same file” is not definable at the C source
level even taking into account the implementation-defined
behaviors of the implementation. Such notion depends on
peculiarities of file systems and on their current state: relative
paths, hard links, symbolic links, logical drives and other
file system features are such that the check for compliance
requires a lot of information that only knowledgeable humans
can provide. In other words, this MISRA guideline should
probably be a directive.

Rule 22.7: The macro EOF shall only be compared
with the unmodified return value from any Standard
Library function capable of returning EOF

This rule is undecidable because of flow sensitivity and
because of the semantic notion of unmodified value. A type-
based approximation drastically restricting what can be done
on the return values of the indicated functions would be
decidable.

Rule 22.8: The value of errno shall be set to zero
prior to a call to an errno-setting-function

This rule, as for the associated Rule 22.9 and Rule 22.10,
is undecidable because it is overly permissive in the forms
and positioning of the operations that zero and test errno.
Syntactic restrictions would result into decidable guidelines
without constraining the programmer in an unacceptable way.

IV. GUIDELINES ON UNREACHABLE AND DEAD CODE

MISRA C:2012 has two required rules to deal with useless,
and thereby possibly undesirable, code. The first one is:

Rule 2.1: A project shall not contain unreachable
code

There, unreachable code is code that cannot be executed
unless the program has undefined behavior. The rationale of
the rule is that the presence of unreachable code may:

11This rule might be extended to also cover strchr(), memchr() and
similar functions whose indiscriminate use can circumvent the const promise
of their parameter.

• Indicate an error in the program’s logic: as the compiler is
allowed to remove unreachable code (but it is not required
to do so),12 why is the code there?

• Waste resources and prevent optimizations in the case the
compiler and the linker do not remove the unreachable
code.

To this, we can add that unreachable code that ends up in
the executable program is, per se, a security issue: an attacker
might exploit another vulnerability in order to actually reach
that code and achieve its malicious goals.

Compliance with Rule 2.1 cannot be proved by means of
static analysis alone.13 Static analysis can reveal that some
functions are never called because, e.g., they never occur in
explicit function calls and their addresses are never taken; the
user can supplement this information by annotating functions
that are only called via assembly code or as interrupt services
routines. Static analysis can also reveal that a certain condition
is always true or always false, when this does not depend
on external inputs, or that an expression used to control
a switch statement can only take certain values. But, in
general, making sure all code is actually reachable requires
dynamic analysis: 100% statement coverage has to be reached
for that purpose, with a test-suite that is a subset of the input
space for the program. Note that we are not talking of unit
testing here (reaching 100% statement coverage via unit tests
does not ensure compliance), but rather of system testing.

Rule 2.2: There shall be no dead code
MISRA C:2012 Rule 2.2 is a required rule that defines dead

code as “Any operation that is executed but whose removal
would not affect program behaviour,” further specifying that
“unreachable code is not dead code as it cannot be executed.”14

Three citations from functional safety standards are provided:
IEC 61508-7 Section C.5.10 [20], DO-178C Section 6.4.4.3.c
[4], and ISO 26262-6 Section 9.4.5 [21]. The first two refer-
ences are also cited for Rule 2.1, and in fact:
IEC 61508-7 Section C.5.10 This section does not define

dead code, but gives a terse introduction to data-flow
analysis. It gives three examples of use, two of which
do overlap with the MISRA C:2012 definition of dead
code: these concern values being unnecessarily written
to memory, a.k.a. dead stores in other literature.

DO-178C Section 6.4.4.3.c Section 6.4.4.3 is titled “Struc-
tural Coverage Analysis Resolution”, which already hints
at the fact that MISRA C:2012 definition of dead code is
not compatible with DO-178C definition. Such definition

12Even though not explicitly mentioned, the linker (and in some cases only
the linker), can also remove unreachable code from the executable, while not
being required to do so.

13Experts might object that symbolic model checking may be sufficient in
some cases. However, since this is based on the synthesis of test cases that are
validated by symbolic or concolic (concrete mixed with symbolic) execution,
we assimilate this technique to dynamic analysis.

14The notion of operation is not explicitly defined in MISRA C:2012 or
in the C Standard. We interpret operation as to signify “anything that in the
C Standard is called operation: integer operations, floating-point operations,
arithmetic operations, bitwise operations, atomic operations, synchronization
operations, pointer operations, . . . ”.



can be found in Annex B, Glossary: “Dead code —
Executable Object Code (or data) which exists as a result
of a software development error but cannot be executed
(code) or used (data) in any operational configuration of
the target computer environment. It is not traceable to a
system or software requirement.” DO-178C also defines
a different notion of “deactivated code.”

ISO 26262-6 Section 9.4.5 This section of ISO 26262-6 is
concerned with structural coverage. To exemplify the use
of structural coverage methods, two examples are given:

“EXAMPLE 1 Analysis of structural coverage
can reveal shortcomings in requirements-based test
cases, inadequacies in requirements, dead code, de-
activated code or unintended functionality.”
“EXAMPLE 2 A rationale can be given for the level
of coverage achieved based on accepted dead code
(e.g. code for debugging) or code segments depend-
ing on different software configurations; or code
not covered can be verified using complementary
methods (e.g. inspections).”

So, while ISO 26262 does not give a definition of dead
code, it clearly states that dead code can be found by
analyzing structural coverage.

Summarizing, the definition of dead code given in
MISRA C:2012 is not compatible with the definitions given
in ISO 26262 and DO-178C. The only overlap between the
functional safety standards cited by MISRA C:2012 and its
notion of dead code is given by dead stores. In other words,
the named standards define dead code as code that cannot be
executed plus data that is written and cannot be read. This is
a much narrower definition than the MISRA C:2012 definition
as “operations that can be removed without affecting program
behaviour.”

MISRA C++:2008 has the following required
Rule 0-1-9 There shall be no dead code.

This is different from MISRA C:2012 Rule 2.2 in that dead
code is characterized as “any executed statement whose re-
moval would not affect program output [...]”. In the sequel, in
order to avoid confusion with the definitions used in functional
safety standards, we will use the expression effectless code
instead of the MISRA C:2012 and the MISRA C++:2008
notions of dead code.

In the online version of the SEI CERT C Coding Standard15

this topic is covered by the following Recommendation:
MSC12-C Detect and remove code that has no effect
or is never executed

SEI CERT C Coding Standard uses the word Recommendation
as opposed to Rule: whereas rules are normative (though not
necessarily amenable to automatic analysis), “recommenda-
tions are meant to provide guidance that, when followed,
should improve the safety, reliability, and security of software

15https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+
Standard, last accessed on October 4, 2022. Note that Recommendation
MSC12-C is not contained in the printed version [22].

systems.” Following MISRA terminology, CERT-C Recom-
mendation MSC12-C would be an advisory directive, whereas
MISRA C:2012 Rule 2.2 is a required rule.

A wholesale ban on effectless code, like the one required
by MISRA C:2012 Rule 2.2, discourages sane things like the
ones shown in Figure 4.

Even a wholesale ban on dead stores is undesirable. Con-
sider the following example

void transmit_octet(const uint8_t octet) {
uint8_t mask = 1U;
for (uint8_t bit = 0; bit < 8; ++bit) {
transmit_bit(octet & mask);
mask <<= 1U;

}
}

The shift-assignment to mask on the last iteration is a dead
store. However, modifying the source code in order to avoid it
would almost certainly decrease code quality for no gain, not
even on efficiency. The point is that the rationale against dead
stores is quite weak: while it is true that they may indicate
a programming mistake, often they do not, and compilers are
quite good at detecting them and optimizing them out when
there is incentive to do so.

An important issue with MISRA C:2012 Rule 2.2 is that
it is the only undecidable MISRA C:2012 rule that is also
unprovable. There is neither a static or dynamic analysis, nor
a sensible review process that can decide whether an operation
can be removed from a program without affecting its behavior.

Note the difference with respect to Rule 2.1: achieving
100% statement coverage proves that a project is compliant.
Moreover, for MISRA C:2012

Rule 14.3: Controlling expressions shall not be in-
variant

achieving 100% branch coverage proves compliance. Of
course, static analysis techniques can pinpoint some instances
of non-compliance with these rules: what remains to be proved
for compliance can be done via dynamic analysis. In contrast,
for Rule 2.2, proving compliance is generally impossible:
it is not just that program behavior equivalence is strongly
undecidable, as we saw in Section II. In order to prove
compliance with Rule 2.2, one should, for each combination of
operations in the program (the number of which is exponential
in the total number of operations), prove that removing that
combination preserves program behavior. In other words,
proving compliance with respect to Rule 2.2 would require
answering with no an exponentially large number of questions
(exponential in the size of the program) of the form “is the
transformed program, where we have deleted some operations,
behaviorally equivalent to the original program?” Answering
these question programmatically cannot be done, it cannot be
done via dynamic analysis, and it cannot be done manually
as program equivalence requires the same behavior for each
of the possible inputs, of which there typically is an infinite
number.
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x + OFFSET; // Addition is justifiable, even when OFFSET is defined to be 0.
x * SCALE; // Multiplication is justifiable, even when SCALE is defined to be 1.
x * sizeof(T); // Multiplication is justifiable, no matter what the value of

// sizeof(T) is.
do_X_if_necessary(); // The function may be inline and its body may be empty

// (e.g., #ifdef-ed out) in this configuration.

typedef enum {
BIT0 = 1U << 0, // Justifiable (no-op) shift by 0 positions.
BIT1 = 1U << 1,
BIT2 = 1U << 2

} Bit_Masks;

Fig. 4. Examples of undesirable violations of MISRA C:2012 Rule 2.2

Guidelines for which compliance is practically impossible
to be proved serve no purpose. For instance, when confronted
with rule MISRA C:2012 Rule 2.2, users will either:

1) unknowingly fake compliance (possibly with the com-
plicity of tool vendors making claims that they cannot
actually make about the coverage of the rule); or,

2) when they are knowledgeable enough, they will raise a
project deviation saying that they did their best and that
they have confidence that remaining effectless code, if
any, is not causing problems.

V. DISCUSSION

In this section we briefly discuss the tradeoff between
decidable and undecidable guidelines and we put forward a
concrete proposal about the treatment of effectless code.

A. How Good Are Undecidable Coding Guidelines?

Are undecidable coding guidelines good or bad? The atten-
tive reader already knows the position of the authors:

• an undecidable guideline is good when there are no decid-
able sound approximations for it (that is, one that catches
all its violations plus more) or when such decidable
approximations would tie the hands of programmers in
a way they cannot easily achieve their objectives;

• in all other cases, undecidable guidelines are bad.
Undecidable guidelines are troublesome because they let pro-
grammers deal with false positives and/or false negatives: if
there are no false negatives then there may be many false
positives and these are time consuming to deal with; if there
are no or few false positives, then there may be false negatives,
in which case developers will have to look for different or
additional solutions. Note that this is a universal constant: if
a guideline is undecidable, any fully automatic checker will
have false positives or false negatives or both.

It is very instructive to observe that, independently from the
number of companies and organizations that offer verification
tools basically for free to the Linux community:

1) for the undecidable undefined behavior caused by reading
uninitialized automatic variables, as we have already
observed, they are looking at compiler options to solve
the problem;

2) for the various undecidable undefined behaviors related
to memory management errors, they are looking at Rust
[23], [24], [25], [26], [27], [28], [29], [30].

While point 1 involves no effort on the part of the developers,
point 2 and the possible move to Rust require a lot of
discipline on the part of the programmers, which shows that
the Linux community, when it comes to important safety and
security matters, is in line with MISRA Compliance:2020,
which states that simply satisfying the immediate convenience
of the developer does not constitute an acceptable rationale
for deviating guidelines [13, Section 4.4].

Note that we are not necessarily proposing to change the
rules in Table I so as to make all those with ‘◦◦’ or ‘◦◦◦’ in
at least one approx. column decidable. Another possibility is
for tools to implement some sound decidable approximations
for those rules

B. An Alternative To the Strict Ban on Effectless Code

As we have seen in Section IV, in general there is no
way to actually, fully comply with MISRA C:2012 Rule 2.2
or CERT-C Recommendation MSC12-C. For projects with
MISRA-compliance requirements this is a problem: as they
cannot claim compliance with MISRA C:2012 Rule 2.2 or
MISRA C++:2008 Rule 0-1-9, they will have to deviate. For
the relatively few cases that a tool can detect:

• the code can be amended if this has a positive effect on
code quality;

• a deviation has to be raised otherwise, as recommended
by MISRA Compliance:2020 [13] (code quality always
comes first).

In any case, a deviation will have to be raised in addition
to all that, simply because nobody can know whether there
are other undetected violations of the rule. Unfortunately, this
does not match any of the allowed rationales for deviation
allowed by MISRA Compliance:2020 (code quality, access
to hardware, integration or use of suitably qualified adopted
code). Pragmatically, projects will have no choice other than
raising a project deviation with a justification along with the
following lines:

Peer review gives us confidence that no evidence of
errors in the program’s logic has been missed due to



undetected violations of Rule 2.2, if any. Testing on
time behavior gives us confidence on the fact that,
should the program contain dead code that is not
removed by the compiler, the resulting slowdown is
negligible.

A possible solution to rectify the situation is by replacing
MISRA C:2012 Rule 2.2 with a directive whose headline can
be something like

Unjustified effectless code shall be minimized.
Note the similarity with required directive

Dir 4.1: Run-time failures shall be minimized
Dir 4.1 takes a very pragmatic approach to a much more
serious problem than effectless code: this is reasonable as
ensuring the absence of run-time errors is impossible as is
ensuring the absence of effectless code.

The notion of unjustified can be defined as follows: code is
unjustified if it has both of the following attributes:

1) it does not help understanding of the algorithm;
2) it does not come from the natural abstraction of the

algorithm so that it can be applied in different situations
(e.g., on different architectures and/or on different con-
figurations).

In particular effectless code is justified if it arises from an
abstraction process. That can be:

• data abstraction: macro expansions, macro definitions;
• control abstraction: loops, recursion.

Figure 5 provides examples of compliance and non-
compliance to this hypothetical directive.

Compliance to the directive requires planning and doc-
umenting activities, possibly involving static analysis and
dynamic analysis techniques, along the lines of Dir 4.1 (i.e.,
with reference to design standards, test plans, static analysis
configuration files and code review checklists).

VI. CONCLUSION

Undecidability is an inescapable limitation of computing
whereby only purely-syntactic properties of programs written
in languages such as C and C++ are algorithmically verifiable
or refutable: all other properties are undecidable, meaning that
there will never be a general algorithm that can decide whether
a program has or does not have the property. As a result, most
of the program properties associated to program safety and
security requirements are undecidable.

Coding guidelines that embody the language-subsetting re-
quirement of many functional safety standards are constrained
between two conflicting goals:

1) they have to prevent bad things from happening;
2) they have to be acceptable to developers.

Goal 2 implies the coding guideline should be directly targeted
at preventing the bad thing. Given that the possibility of occur-
rence of the bad thing is usually undecidable, the conjunction
of goal 1 with goal 2 tends to favor undecidable guidelines.
The tradeoff changes between communities and with time:

• developers of critical software in highly-regulated indus-
try sectors are more willing to exchange a little bit of
inconvenience with the strong guarantees that decidable
guidelines can provide;

• even highly-unregulated communities, like the one re-
volving around the Linux kernel, seem now inclined to
accept more restrictions: something that, only a few years
ago, would have been vehemently rejected.

While undecidable coding guidelines cannot pragmatically
be dispensed with, at least for languages like C and C++,
analysis tools can, in several cases, be based on some decidable
approximations. Nonetheless, undecidable program properties
tend to confuse developers, no matter whether the guidelines
used to determine that the program has the property are
undecidable or decidable. Many developers are distracted by
(sometimes false) thoughts like “There is no problem in my
program, why this violation?” without considering that no
perfect solution exists and that, by necessity, we need to
compromise.

We believe this paper, in which we studied the role played
by undecidability in the most widely used coding standard,
MISRA C, will help developers in better appreciating what
the problems are and which tradeoffs have to be faced. Some
of the findings of this research were totally unexpected at
the outset: as a result, this work goes beyond its original
survey/educational goals by uncovering some real problems
and corresponding possible solutions.
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