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Abstract—In the development of high-integrity software, all
interactions between components must satisfy design constraints.
Hierarchical levels must not be bypassed: if the design prescribes
that software layer A cannot interact directly with layer C
without the intermediation of layer B, this is something that
must be verified. If components with different criticalities have
to coexist on the same ECU, huge savings are possible if we
can prove that lower-criticality components cannot interfere
with higher-criticality ones. Effectiveness of monitoring safety
mechanisms crucially depends on the independence between the
monitored element and the monitor. In this paper, after recollect-
ing the basic ideas and methodologies of software decomposition,
we introduce the notions of independence and interference in
ISO 26262 and other functional safety standards. We then
show how architectural constraints at the software level can
be formally verified by means of control and data flow static
analyses. This technique allows for the formal verification of the
design restricting all interactions between user-defined software
elements: this includes dynamic, run-time dependencies such as
read or write accesses to shared memory, function calls, passing
and returning of data, as well as static dependencies due to header
file inclusion and macro expansion. The formalization we present
does not rely on complex logic formalisms and its implementation
in the tool ECLAIR has been certified by TÜV SÜD.

I. INTRODUCTION

It is well known that managing the complexity of large
and/or critical software systems requires decomposition, that
is, the system is divided into parts that are small enough to
be reasoned upon, maintained and tested in isolation, i.e.,
independently from one another. At a very superficial level,
software decomposition is advantageous in itself. For instance,
it allows:

• organizing the program text into manageable chunks;
• separate compilation;
• decreasing some metrics related to program complexity.

These are nice to have, but the real advantage of software
decomposition is when the interactions between the compo-
nents are kept under strict control. In fact, the components of
a system and their interactions can be modeled as a graph: if
any component may interact with any other component, the
complexity of the interaction may grow quadratically with the
number of components. In extreme cases, failure to control
the interactions among components can give rise to “spaghetti
code”: this pejorative expression is usually associated to the
abuse of goto’s (the control-flow flavor of spaghetti code)

and global variables (the data-flow flavor of spaghetti code),
but attitudes like “every function may call any function” and
“every function may read and/or write any variable” give rise
to the same phenomena.

When software components have been defined, two metrics
can help assessing the partitioning: coupling and cohesion.

Cohesion measures dependency among the parts of a compo-
nent, so that
• cohesion is high when parts of the component cooper-

ate to the same tasks and are strongly related;
• cohesion is low when the component happens to be a

container for unrelated parts that do not cooperate or
do so only marginally.

Coupling measures dependency among components, so that
• coupling is high when changing one component is

likely to have an important impact on other compo-
nents;

• coupling is low when changing one component does
not affect other components or does so only marginally.

As a consequence, effective software decomposition aims at
breaking down a program into components so as to achieving
low coupling and high cohesion.

There are several software decomposition paradigms, such
as procedural/algorithmic decomposition, abstract data types,
and object-oriented decomposition. Note that these are orthog-
onal to the programming models: linguistic support helps, but
it is not essential. In addition, there are several criteria for
effective system decomposing, including:

Layering: Any system should be designed and built as a
hierarchy of layers, where each layer uses only the
services offered by the lower layers [3]. A layer is a
component that provides services at a given level of
abstraction: it depends only on lower layer and it has
no knowledge of higher layers.

Partitioning: Vertically divide a system into several inde-
pendent (or weakly-coupled) components. Partitions are
divisions at the same level of abstraction.

Information hiding: Hide all what is likely to change [4].

Several criteria are often used at the same time, e.g., combining
partitions and layers. Note also that there are variants whose
suitability depends on the design goals. For instance, we have
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Fig. 1. Architecture model according to the ISO/OSI Reference Model [1] (image courtesy of Jürgen Foag [2])

• opaque layering: a layer may only refer to the layer
immediately below (when the main design goals are
maintainability and flexibility);

• transparent layering: a layer may refer to any layer below
(when run-time efficiency is an additional design goal).

A classical example of an architecture model based on
layering is represented by the ISO/OSI Reference Model [1]:
this is depicted in Figure 1.

Another example is given by the AUTOSAR Classic Plat-
form, which specifies a detailed layered software architecture
with rather strict constraints [5]. The AUTOSAR Adaptive
Platform is deliberately much less detailed and strict in order
to provide more latitude to stack vendors for their solution
design [6].

Proper decomposition (low coupling, high cohesion) is
important for several reasons, some of which apply to all kinds
of systems:

• easier design and development;
• easier component verification;
• easier system integration and verification;
• easier maintenance.

Safety and security concerns make things even more inter-
esting, as unwanted or unknown dependencies or interference
among components may easily turn into safety and/or security
issues. Consider two software components A and B and an
uncontrolled dependency of A from B:

• a failure in B might unexpectedly cause a failure in A (a
safety issue);

• a vulnerability of B might unexpectedly turn into a
vulnerability of A (a security issue).

For this reason, the theme of software decomposition goes,
for safety- and/or security-critical systems, well beyond the
need of managing complexity from the software design and
engineering point of view. In fact, all functional safety and

cybersecurity standards have (to a varying degree of precision
and formality) requirements in terms of component indepen-
dence, interference, isolation (the terminology changes passing
from one standard to another).

In this paper we review, in Section II, the definitions
and prescriptions of the ISO 26262 automotive functional
safety standard related to partitioning and independence of
components [7]. This standard is currently the one where such
notions are detailed in the most comprehensive way. We then
review, in Section III, how such notions are explicitly or im-
plicitly referred to in other functional safety and cybersecurity
standards. Section IV discusses how architectural constraints
at the software level can be enforced by static analysis in C
and C++. The way in which these ideas are implemented in
the ECLAIR Software Verification Platform® is presented in
Section V. Section VI concludes the paper.

II. PARTITIONING AND INDEPENDENCE IN ISO 26262
ISO 26262:2018 defines freedom from interference (FFI) as

“absence of cascading failures between two or more elements
that could lead to the violation of a safety requirement”
[8, Clause 3.65]. Simply put, a cascading failure (CF) is a
failure that causes an element to fail, which in turn causes
a failure in another element [8, Clause 3.17], whereas a
common cause failure (CCF) is the failure of two or more
elements resulting directly from a single specific event (root
cause) [8, Clause 3.18]. The union of CFs and CCFs gives
what ISO 26262:2018 calls dependent failures (DFs), namely,
failures that are not statistically independent [8, Clause 3.29].

The notion of DF comes into play in the definition of
one aspect of independence: “absence of dependent failures
between two or more elements that could lead to the violation
of a safety requirement” [8, Clause 3.78].1 As CFs are a subset

1This is the technical aspect of independence, the other aspect being the
organizational one.



of DFs, FFI is instrumental in achieving independence. In turn,
achievement of independence or freedom from interference
between the software architectural elements can be required
because of:

a. the application of an ASIL decomposition at the software
level;

b. the implementation of software safety requirements;2 or
c. the required coexistence of the software architectural

elements [9, Annex E].
Concerning point c., criteria for the coexistence of elements

are given in [10, Clause 6]. When coexistence is required there
are two options: (1) all coexisting sub-elements are developed
in accordance to the highest ASIL applicable to the sub-
elements; (2) the guidance provided in [10, Clause 6] is used
to determine whether sub-elements with different ASILs can
coexist within the same element. Such guidance is based on the
analysis of interference of each sub-element with other sub-
elements: evidence has to be provided to the effect that there
are no CFs from a sub-element with no ASIL assigned (QM),
or a lower ASIL assigned, to a sub-element with a higher
ASIL assigned, such that these CFs lead to the violation of a
safety requirement of the element.3

III. PARTITIONING AND INDEPENDENCE IN OTHER
STANDARDS

The notions and requirements that ISO 26262 spells out in
rather detailed form have been part of the state-of-the-art in
critical system engineering for decades. It is thus not surprising
that we can find the same concepts and prescriptions, albeit
in a less precise form, in all major standards, which will be
reviewed in the next sections. Note that, in the quoted excerpts,
emphasis is always ours and not of the quoted source.

A. DO-178C
The section on “Architectural Considerations” [11, Sec-

tion 2.4] requires the system safety assessment process to
establish that “sufficient independence exists between software
components.” It then goes on by making it clear what the
consequences are of being unable to prove independence:

If partitioning and independence between software
components cannot be demonstrated, the software
components should be viewed as a single software
component when assigning software levels (that is,
all components are assigned the software level as-
sociated with the most severe failure condition to
which the software can contribute).

Partitioning is defined in [11, Section 2.4.1]:
Partitioning is a technique for providing isolation
between software components to contain and/or iso-
late faults and potentially reduce the effort of the

2E.g., to provide evidence for the effectiveness of monitoring safety
mechanisms by showing independence between the monitored element and
the monitor.

3It is important to realize that “absence of interference” and “freedom from
interference” are distinct concepts in ISO 26262:2018. The latter concept does
not depend on ASILs or lack thereof, so that “freedom from interference”
implies “absence of interference,” but not the other way around.

software verification process. Partitioning between
software components may be achieved by allocating
unique hardware resources to each component [...]
Alternatively, partitioning provisions may be made
to allow multiple software components to run on the
same hardware platform. Regardless of the method,
the following should be ensured for partitioned soft-
ware components:
a. A partitioned software component should not be

allowed to contaminate another partitioned soft-
ware component’s code, input/output (I/O), or data
storage areas.

b. A partitioned software component should be al-
lowed to consume shared processor resources only
during its scheduled period of execution.

c. [...] Failures of hardware unique to a partitioned
software component should not cause adverse
effects on other partitioned software components.

d. [...]
The software life cycle processes should address
the partitioning design considerations. These include
the extent and scope of interactions permitted be-
tween the partitioned components and whether the
protection is implemented by hardware or by a
combination of hardware and software.

The section on “Safety Monitoring” [11, Section 2.4.3]
states:

Safety monitoring is a means of protecting against
specific failure conditions by directly monitoring a
function for failures that would result in a failure
condition. [...] there are three important attributes of
the monitor that should be determined:
a. Software level: [...]
b. System fault coverage: [...]
c. Independence of function and monitor: The mon-

itor and protective mechanism are not rendered
inoperative by the same failure that causes the
failure condition.

B. IEC 61508

In IEC 61508, the strongest incentive to ensure indepen-
dence can be found in Part 1 [12, 7.6.2.10]:

7.8.2.10 For an E/E/PE safety-related system that
implements safety functions of different safety in-
tegrity levels, unless it can be shown there is
sufficient independence of implementation between
these particular safety functions, those parts of the
safety-related hardware and software where there
is insufficient independence of implementation shall
be treated as belonging to the safety function with
the highest safety integrity level. Therefore, the
requirements applicable to the highest relevant safety
integrity level shall apply to all those parts.
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For software, the requirements on independence and non-
interference between safety functions and non-safety functions
are given in IEC 1508 Part 3 [13, 7.4.2.8, 7.4.2.9]:

7.4.2.8 Where the software is to implement both
safety and non-safety functions, then all of the
software shall be treated as safety-related, unless
adequate design measures ensure that the failures of
non-safety functions cannot adversely affect safety
functions.
7.4.2.9 Where the software is to implement safety
functions of different safety integrity levels, then
all of the software shall be treated as belonging to
the highest safety integrity level, unless adequate
independence between the safety functions of the
different safety integrity levels can be shown in
the design. It shall be demonstrated either (1) that
independence is achieved by both in the spatial
and temporal domains, or (2) that any violation
of independence is controlled. The justification for
independence shall be documented.

C. IEC 62304

In IEC 62304 parlance, a medical device can be composed
of difference subsystems, some of which are software systems.
In turn a software system is composed of one or more software
items, and each software item is composed of one or more
software units or decomposable software items. Software units
are not further decomposed for the purposes of testing or
software configuration management.

IEC 62304, in Section “Software safety classification,”
broadly refers to the concept of “segregation” [14], [15, 4.3]:

d) When a SOFTWARE SYSTEM is decomposed
into SOFTWARE ITEMS, and when a SOFT-
WARE ITEM is decomposed into further SOFT-
WARE ITEMS, such SOFTWARE ITEMS shall
inherit the software safety classification of the
original SOFTWARE ITEM (or SOFTWARE
SYSTEM) unless the MANUFACTURER docu-
ments a rationale for classification into a different
software safety class [...] Such a rationale shall
explain how the new SOFTWARE ITEMS are
segregated so that they may be classified sepa-
rately.

This concept is further elaborated in [14], [15, B.4.3]:
The software ARCHITECTURE should promote
segregation of software items that are required for
safe operation and should describe the methods used
to ensure effective segregation of those SOFTWARE
ITEMS. Segregation is not restricted to physical
(processor or memory partition) separation but in-
cludes any mechanism that prevents one SOFT-
WARE ITEM from negatively affecting another. The
adequacy of a segregation is determined based on the
RISKS involved and the rationale which is required
to be documented.

D. EN 50128

EN 50128 (railways) spells out the rationale for indepen-
dence as follows [16, 7.3.4.9]:

7.3.4.9 Where the software consists of components
of different software safety integrity levels then
all of the software components shall be treated as
belonging to the highest of these levels unless there
is evidence of independence between the higher
software safety integrity level components and the
lower software safety integrity level components.
This evidence shall be recorded in the Software
Architecture Specification.

In the subsequent clause, one can find an important incentive
in a formal specification of the software architecture [16,
7.3.4.10]:

7.3.4.10 The Software Architecture Specification
shall describe the strategy for the software devel-
opment to the extent required by the software safety
integrity level. The Software Architecture Specifica-
tion shall be expressed and structured in such a way
that it is

a) complete, consistent, clear, precise, unequivocal,
verifiable, testable, maintainable and feasible,

b) traceable back to the Software Requirements
Specification.

E. IEC 60335

In IEC 60335 (household and similar electrical appliances),
Annex R of Part 1 “Software evaluation” (normative), “in-
dependent monitoring” is cited as an example of “additional
fault/error detection means” in Clause R.2.2 [17]. Section
R.3.2.2 “Software architecture” has the following require-
ments:

R.3.2.2.1 The specification of the software architec-
ture shall include the following aspects:
– techniques and measures to control software

faults/errors (refer to R.2.2);
– interactions between hardware and software;
– partitioning into modules and their allocation to

the specified safety functions;
– hierarchy and call structure of the modules (con-

trol flow);
– interrupt handling;
– data flow and restrictions on data access;
– architecture and storage of data;
– time-based dependencies of sequences and data.
R.3.2.2.2 The architecture specification shall be val-
idated against the specification of the software safety
requirements by static analysis.

Such requirements have their counterparts in the section
about “Module design and coding” [17, R.3.2.3].

F. ISO/SAE 21434

ISO/SAE 21434, in its Annex E (informative), introduces
the notion of Cybersecurity Assurance Level (CAL), which



plays the role of Safety Integrity Level and similar concepts
in functional safety standards [18, Annex E]. CALs are
qualitative expressions of the level of cybersecurity assurance
required: the higher the CAL, the higher is the rigor with
which cybersecurity activities are performed. ISO/SAE 21434
does not prescribe how many CALs there are and how they
are used to drive the cybersecurity engineering: this is left
to individual organizations and the norm only provides a
classification scheme along with examples. The example given
in [18, Annex E] defines four CALs, from CAL 1 to CAL 4,
which are assigned depending on two attributes of the relevant
threat scenarios: their maximum impact (from low to high:
negligible, moderate, major or severe) and the attack vector
(from less to more risky: physical, local, adjacent or net-
work).4 Of course, threat scenarios that admit network attack
vectors are the more risky ones, and higher CALs correspond
to higher risk. What is important to note, though, is that the
risk value is dynamic and depends also on external factors.
For example, when a vulnerability is discovered in the field
and becomes public, risk becomes higher; when, subsequently,
the vulnerability is fixed or other countermeasures have been
applied, risk drops.

Annex E of ISO/SAE 21434 stipulates that

In product development, if cybersecurity require-
ments are allocated to components, and isolation
from other components cannot be confirmed, then
the components can be developed in accordance
with the highest CAL for those cybersecurity require-
ments.

Among the requirements of ISO/SAE 21434, it is worth
mentioning

[RC-10-06] Established and trusted design and im-
plementation principles should be applied to avoid
or minimize the introduction of weaknesses.
NOTE 7 Examples of design principles for architectural
design for cybersecurity are given in NIST Special Publi-
cation 800-160 Vol. 1 [19], appendix F.1.

In turn, Appendix F of [19], which extensively cites the rest
of the same document, discusses, among many other things,
the importance of decomposition, layering, isolation and non-
interference. In particular, Appendix F.1.2 of [19] “Design
Considerations” states (underlined expressions are references
to Appendix E of the same document):

• Composition
Trustworthiness judgments are compositional.
They must align with how the set of composed
elements provides a system capability. The way
that the system is composed from its system
elements must include the design principles of
Compositional Trustworthiness and, to the extent

4Thread scenarios of negligible impact are assigned no CAL in the example.
This does not mean that no cybersecurity activities are in order, only that the
level of rigor required may not justify the adoption of the requirements and
guidelines of ISO/SAE 21434.

practical, Structured Decomposition and Compo-
sition.

• [...]
• Failure Propagation

All systems fail at some point. When a failure
occurs, another failure scenario or the creation
of a new failure scenario should not be triggered
or invoked (Protective Failure). Designing without
single points of failure (Redundancy) — including
not having common mode failures (Diversity) —
can help isolate system element failures while
providing the required system capabilities. Addi-
tionally, the response to failure should not lead to
loss or other failures (Protective Recovery).

IV. ENFORCING ARCHITECTURAL CONSTRAINTS BY
STATIC ANALYSIS IN C AND C++

Enforcing architectural constraints may require, depending
on the nature of the constraints, different techniques and
implementations at different levels: at the source code level, at
the level of the operating system or hypervisor, at the hardware
level. For instance, freedom from interference in ISO 26262
must be developed and evaluated taking into account faults
concerning [9, Annex D]:

• timing and execution, including blocking of execution,
deadlocks, livelocks, incorrect allocation of execution
time, and incorrect synchronization between software
elements;

• memory, including corruption of content, inconsistent
data (e.g., because of data races), stack overflow and
underflow, read or write access to memory allocated to
another software element;

• exchange of information, including, among many other
instances, communication via global or file-scope vari-
ables and via memory-mapped I/O registers, the incorrect
addressing of information and so on.

ISO 26262 explicitly mentions static analysis among the
verification methods that are appropriate for demonstrating
freedom from interference.

Static analysis is not always sufficient, though. For instance,
in ISO 26262 and for ASIL D, software partitioning must be
supported by dedicated hardware features or equivalent means
[9, Clause 7.4.9]. An MPU is typically used for this purpose;
however, as this can only enforce partitioning of memory areas
and system-on-chip peripherals, other measures are required
in order to fully ensure freedom of interference and, again,
static analysis is by far the best technique for anything that is
observable at the source code level.

So, how can static analysis help? First, observe that com-
pliance to the MISRA guidelines [20], [21], [22] reduces
the risk of crashes and of execution blocking due to unex-
pected excessive loop iterations (in the timing and execution
category of ISO 26262). MISRA compliance also provides
protection against stack and buffer overflow (in the memory
category of ISO 26262). With the forthcoming publication
of the Amendment 4 to MISRA C:2012, which completes
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MISRA C:2012 coverage of C11 and C18 features, guidance
will be extended to cover also deadlocks, some forms of
incorrect synchronization, and data races.

Secondly, and this is actually the main point of this pa-
per, static analysis is also instrumental in checking system
decomposition by tracking run-time as well as compile-time
dependencies.

A. Constrain Dynamic/Run-time Dependencies

Static analysis can reliably detect calls to C/C++ functions
and C++ methods. Of course, when such calls happen via
pointers, the check cannot be exact in all cases, but it can err
on the safe side. That is, when the analysis cannot exclude
that a call via pointer violates an architectural constraint, it
will flag the potential call site. In this case, developers will
have to investigate further but, nonetheless:

• this is still orders of magnitude better than checking
architectural constraints by peer review alone;

• given that calls via pointers are infrequent, as is
the address-taking of functions and methods, the phe-
nomenon is rare.

Static analysis is also the perfect technique to track read
and/or write access to scalar and aggregate variables. It is
of course very important that reads and writes are tracked
separately: from the safety point of view, reading a variable
is generally less critical than writing to it, as the latter
may cause data corruption. From the security point of view,
though, unwanted reading may cause unintended information
disclosure. Moreover, when it comes to embedded systems,
reading memory-mapped I/O registers can trigger all kinds of
side-effects just as when writing to them.

For any static analysis tool meant to assist in checking the
compliance with architectural constraints, the ability to track
accesses to individual structure fields is very important. Think
about a network stack that defines a packet data structure: in
general, not all layers should be granted read/write access to
all fields. For example, if the transport layer uses sequence
numbers to allow the receiving end to deliver the packets in
the order in which they were transmitted by the other end, the
network and data link layers should certainly not write to the
sequence number field.

Let us consider the simplified scenario described in [23].
When focusing on a particular safety requirement, the C
functions constituting the Linux Kernel can be partitioned
in two classes: Safety-Related (SR), and Not Safety-Related
(NSR). If we only consider functions, the corresponding safety
architectural constraint is that SR functions may only call
other SR functions. In fact, if function f() is safety-related,
hence it must be developed and tested according to safety-
adequate standards, and f() calls g(), then also g() must
be developed and tested according to such standards. Roughly
speaking, a reliable function cannot call an unreliable one, for
otherwise neither would be reliable.

Tracking functions is not sufficient, as the Linux Kernel
internal state is represented by many persistent data structures
pointed to by global and file-scope variables. The enforcing

of architectural constraints on their access is instrumental in
ensuring that corruption of such data structures cannot take
place.

B. Constrain Static/Compile-time Dependencies

Module dependencies can also manifest themselves at
compile-time and so, a fortiori, static analysis is the ideal tool
to keep them under control. They can concern header files,
where the relevant action is their inclusion via #include
directives. By following the principle of single responsibility
(always a good software engineering practice that has various
benefits), the content of header files is minimized which,
in turn, can lead to strong guarantees of independence: if a
module does not even see the declaration of a variable or a
field, surely it cannot access it.

One example of architectural constraints that can be en-
forced in this way is the one whereby the only module that can
directly interface with hardware is the Hardware Abstraction
Layer (HAL). This is easy to implement if, e.g., all the header
files that allow direct interaction with the hardware are, say,
in the hardware/ folder.

Hardware-related header files give us the opportunity of
explaining one of the reasons why the ability of tracking
macro expansion is so important. The header files provided
by hardware manufacturers are generally not partitioned in a
way that reflects criticality. Consider, for example the header
file partially reproduced in Figure 2. The sysinfo block, the
one starting at address SYSINFO_BASE, is read-only and
contains system information, such as the Chip ID: this is
not very critical. The watchdog block, starting at address
WATCHDOG_BASE, is much more critical, as mishandling
watchdogs can defeat their whole purpose [24], [25]. The
ability to track macro expansion at the highest level of
granularity allows precise control of those hardware features
different parts of the HAL will have access to.

C. The Importance of Early and Continuous Enforcement of
Architectural Constraints

Once the system has been decomposed and the allowed
interactions between components have been defined, how can
you check that the implementation complies with this aspect
of the design? Checking by peer review is time consuming
and error prone and, of course the effort is multiplied by
the number of times the check needs to be redone. Checking
only at the end of the project is asking for trouble, as any
non-compliance found at that stage might require extensive
reworking.

It is important to observe that violations of architectural
constraints are often not very visible: a programmer might, in
good faith, call a function from where it should not be called
or write to a variable that should not be written there. Chances
are that nobody will notice this until much later in the project
when the cost of remediation is very high.

This, in addition to the strong soundness guarantees it pro-
vides, is the great advantage of checking software architectural
constraints by static analysis: little time spent in encoding the



/**
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.

*
* SPDX-License-Identifier: BSD-3-Clause

*/
#ifndef _ADDRESSMAP_H_
#define _ADDRESSMAP_H_

#include "hardware/platform_defs.h"

// Register address offsets for atomic RMW aliases
#define REG_ALIAS_RW_BITS (0x0u << 12u)
#define REG_ALIAS_XOR_BITS (0x1u << 12u)
#define REG_ALIAS_SET_BITS (0x2u << 12u)
#define REG_ALIAS_CLR_BITS (0x3u << 12u)

Omitted parts...
#define SYSINFO_BASE _u(0x40000000)
#define SYSCFG_BASE _u(0x40004000)
#define CLOCKS_BASE _u(0x40008000)
#define RESETS_BASE _u(0x4000c000)
Omitted parts...
#define BUSCTRL_BASE _u(0x40030000)
#define UART0_BASE _u(0x40034000)
#define UART1_BASE _u(0x40038000)
Omitted parts...
#define TIMER_BASE _u(0x40054000)
#define WATCHDOG_BASE _u(0x40058000)
#define RTC_BASE _u(0x4005c000)
#define ROSC_BASE _u(0x40060000)
#define VREG_AND_CHIP_RESET_BASE _u(0x40064000)
#define TBMAN_BASE _u(0x4006c000)
#define DMA_BASE _u(0x50000000)
Omitted parts...

Fig. 2. Partial contents of pico-sdk/src/rp2040/hardware_regs/include/hardware/regs/addressmap.h, cloned from https://github.
com/raspberrypi/pico-sdk.git on February 24, 2023

decomposition into a tool configuration is repaid in spades
by allowing the check to to be performed in a completely
automatic and reliable way, possibly as part of continuous
integration processes.

V. THE ECLAIR B.PROJORG SERVICE

The ideas presented in this paper have been implemented
in the ECLAIR Software Verification Platform® under the
service named B.PROJORG, a mnemonic name for PROJect
ORGanization checker. Despite the low-key name, which is
meant not to scare away developers of non-critical systems,
the service has been certified by TÜV SÜD Rail GmbH for
safety-related development in compliance with ISO 26262 (up
to ASIL D), IEC 61508 (up to SIL 4), EN 50128 (up to SIL
4), IEC 62304 (up to Class C), and ISO 25119 (up to SRL 3).

To see what a configuration for this service looks like, let
us reconsider the example of [23] that has two classes of C

functions: SR (Safety-Related) and NSR (Not Safety-Related);
so we specify that we are only interested in entities of kind
function:

-config=B.PROJORG,
all_component_entities+="kind(function)"

As SR and NSR may not constitute a partition of the system,
we put all other functions in a component called “unknown”:

-config=B.PROJORG,component_entities+=
{SR,content,"name(fun1)"},
{SR,content,"name(fun2)"},
{NSR,content,"name(fun3)"},
{NSR,content,"name(fun4)"},
{"unknown",content,"any()"}

So functions named fun1 and fun2 go into component SR,
functions named fun3 and fun4 go into component NSR,
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and all other functions go into component unknown. The
safety constraint is that SR functions may only call other SR
functions. As calls are always allowed between functions in the
same component, we only need to specify that calls from NSR
functions to SR and unknown functions are allowed as well
as calls from unknown functions to NSR and SR functions:

-config=B.PROJORG,component_allows+=
"from(NSR)&&to(SR||unknown)"

-config=B.PROJORG,component_allows+=
"from(unknown)&&to(SR||NSR)"

All calls that are not intra-component and are not explicitly
allowed are reported as violations: nothing can escape.

For a slightly more complex example, let us reconsider the
ISO/OSI Reference Model in simplified form. An application
software program, the APPLICATION component, needs to
use the services of a network stack. The network stack has
three components corresponding to OSI layers, identified by
DATA_LINK, NETWORK and TRANSPORT. The architectural
constraint that has to be enforced is that network layers are
not bypassed; e.g., if the DATA_LINK component is accessed
bypassing the NETWORK component, then a packet that cannot
be routed may be built, which is clearly not wanted. In
order to add interest, we want to allow an exception: the
APPLICATION component may call the link_status()
function in DATA_LINK. The rationale of this exception is
that becoming aware of the temporary impossibility to commu-
nicate only via timeouts is incompatible with the application
goals.

For this example, we consider variables and functions with
external linkage in user code (not system code):

-config=B.PROJORG,all_component_entities+=
"linkage(external)

&&kind(var||function)
&&all_decl(loc(top(file(kind(

user||main_file)))))"

In order to save typing, we exploit the fact that we used
a proper (MISRA compliant) header file discipline, so that
the NETWORK and TRANSPORT components, as well as the
non-exceptional part of the DATA_LINK component can be
defined implicitly by means of their header file: nl.h, tl.h
and dl.h, respectively:

-config=B.PROJORG,component_entities+=
{"DATA_LINK/Except",content,

"ˆlink_status\\(.*$"},
{DATA_LINK,content,

"any_decl(loc(top(file(ˆdl\\.h$))))"},
{NETWORK,content,

"any_decl(loc(top(file(ˆnl\\.h$))))"},
{TRANSPORT,content,

"any_decl(loc(top(file(ˆtl\\.h$))))"},
{APPLICATION,content,

"ˆmain\\(.*$"}

The exceptional part of the DATA_LINK component, denoted
by DATA_LINK/Except,5 is constituted by the single func-
tion named link_status: as we are in C, there is no need to
specify the function argument types. Similarly, the only entity
in the APPLICATION component is the main() function.

In addition to checking dynamic/run-time dependency, we
want to check static/compile-time dependency, such as header
file inclusion. To do this, we first need to assign source files
to components:

-config=B.PROJORG,component_files+=
{"DATA_LINK/Except","ˆdl\\.h$"},
{DATA_LINK,"ˆdl\\.c$"},
{NETWORK,"ˆnl\\.[ch]$"},
{TRANSPORT,"ˆtl\\.[ch]$"},
{APPLICATION,"ˆmain\\.c$"},
{"","kind(main_file||user)"}

Now that the compile-time and run-time aspects of all com-
ponents have been defined, we simplify our life by introducing
a relation between components called over (an arbitrary
identifier). We define it so that A over B means A is directly
above B in our ISO/OSI simplified model, where we do not
have the presentation and session layers:

-config=B.PROJORG,component_relation+=
{APPLICATION, over, TRANSPORT},
{TRANSPORT, over, NETWORK},
{NETWORK, over, DATA_LINK}

Remembering that all intra-component actions are implicitly
allowed, specifying the compliant interactions is now trivial.
Entities in component A may include and call entities in
component B if A is over B:

-config=B.PROJORG,component_allows+=
"rel(over)

&&action(include||call)"

As an exception, the APPLICATION component is granted
permission to call the link_status() function and include
DATA_LINK’s header file:

-config=B.PROJORG,component_allows+=
"from(APPLICATION)

&&to(DATA_LINK/Except)
&&action(include||call)"

It can be seen that B.PROJORG, thanks to the expressive-
ness of its configuration language, is able to capture all sorts of
of software architectural constraints. Yet, when the constraints
and the components are simple, the configuration is corre-
spondingly simple and natural. Moreover, the configuration
of B.PROJORG, as any other ECLAIR configuration, can be
rendered in plain English by service B.EXPLAIN, which has

5Observe that names of components are completely in the hand of the
users: for B.PROJORG they are simply strings that cannot contain whitespace.
Here we see the use of the ‘/’ character to spell out a subcomponent of
DATA_LINK that has peculiar properties



been designed to facilitate peer reviewing of configurations
also by those unfamiliar with the configuration language.

VI. CONCLUSION

Proper software decomposition into components and sub-
components is a crucial element of the design of any software
or software-controlled system. Decomposing and restricting
the possible interaction between components is the only way
to effectively dominate complexity in spite of the constant
growth in the size of software artifacts.

When it comes to the design of critical systems, the en-
forcement of (software) architectural constraints is even more
important as interactions between components can cause safety
and security issues of any kind. It is thus no surprise that all
safety and security standards have related prescriptions, though
at different levels of detail and rigor.

In this paper, after a refresher on the topic of software
decomposition in the general theory and practice of software
engineering, we reviewed the contents of major functional
safety and security standards on the purpose and use of
software architectural constraints in the design and implemen-
tation of critical systems. We have then shown how the ability
to formally and strictly control the interactions of software
components by static analysis is instrumental in gathering the
required evidence in a reliable way and, most importantly, after
the initial configuration, in a completely automatic way.

For concreteness of exposition, we have shown how these
ideas are captured in B.PROJORG, a service based on the
ECLAIR Software Verification Platform®, whose configuration
language is formal, expressive and yet rather simple to use.

If the software architectural constraints defined in the design
phase are captured into a tool configuration, and the automatic
check is performed often, possibly in the context of a CI/CD
system, and starting from the early coding phases, any devi-
ation will be promptly reported with the obvious advantages
in terms of development time and costs.
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