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And there is nothing you can do with it without the
build. Nothing!
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Hardly a week goes by at BUGSENG without having
to explain to someone that almost any piece of
C text, considered in isolation, means absolutely

nothing. The belief that C text has meaning in itself is
so common, also among seasoned C practitioners, that
I thought writing a short paper on the subject was a
good time investment. The problem is due to the
fact that the semantics of the C programming language
is not fully defined: non-definite behavior, predefined
macros, different library implementations, peculiarities of
the translation process, . . . : all these contribute to the
fact that no meaning can be assigned to source code unless
full details about the build are available. The paper starts
with an exercise that admits a solution. The existence
of this solution will hopefully convince anyone that, in
general, unless the toolchain and the build procedure are
fully known, no meaning can be assigned to any nontrivial
piece of C code.

Exercise

Write a C function that returns an integer to the
caller, with the following constraints:

1. the function source code text is self-contained (no
access to external code, including the standard
library) and is shorter than 700 characters;
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2. the function has no state and no input what-
soever (no static variables, no parameters, no
access to globals, no access to the environment);

3. the function uses only the features of the C lan-
guage specified in any version of the ISO C stan-
dard, its output does not depend on unspecified
or undefined behavior, and its code does not
exceed any minimum implementation limit;

4. the function can be compiled in more than 700
different ways, each corresponding to a single
invocation of GCC/x86 64 (version 8 or later),
so that it returns more than 700 different values;

5. the used GCC command lines do not include any
-D or -U options (including synonyms, i.e., no
explicit fiddling with macros), use no assembler
options (i.e., no fiddling with assembly code),
no linker options (i.e., no fiddling with object
files and libraries), and no directory options
(i.e., tools, header files and libraries will only
be searched in standard places).

A solution will be given later in the paper. But
“do not turn to the answer until you have
made a genuine effort to solve the problem
by yourself, or unless you absolutely do not
have time to work this particular problem.
After getting your own solution or giving
the problem a decent try, you may find the
answer instructive and helpful.”

(Donald E. Knuth, TAOCP)
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C Is Not Fully Defined

C is defined by international standards: it was first
standardized in 1989 by the American National Stan-
dards Institute (this version of the language is known
as ANSI C) and then by the International Organiza-
tion for Standardization (ISO) [5–9].

For very good reasons [1], the C language is not
fully defined. The concrete possibility of generating
very efficient code even with relatively simple com-
pilers on any architecture is the main factor why we
have

implementation-defined behavior: unspecified behav-
ior where each implementation documents how
the choice is made [9, Par. 3.4.1]; e.g., the sizes
and precise representations of the standard inte-
ger types;

undefined behavior: behavior, upon use of a non-
portable or erroneous program construct or of
erroneous data, for which this International Stan-
dard imposes no requirements [9, Par. 3.4.3]; e.g.,
attempting to write to a string literal constant;

unspecified behavior: use of an unspecified value, or
other behavior where this International Standard
provides two or more possibilities and imposes
no further requirements on which is chosen in
any instance [9, Par. 3.4.4]; e.g., the order in
which function call arguments are evaluated.

The last two kinds of non-definite behavior (this is
how we collectively call all instances of behavior that
is not fully defined), when present, make the seman-
tics of a program completely unpredictable. We will
not concern ourselves with these kinds of behavior in
this paper.

Another kind of behavior was added to the lan-
guage in order to make it universally useful:

locale-specific behavior: behavior that depends on lo-
cal conventions of nationality, culture, and lan-
guage that each implementation documents [9,
Par. 3.4.2]; e.g., character sets and how charac-
ters are displayed.

Locale-specific behavior influences, for instance, the
reading and writing of integer and floating-point num-
bers, the formatting of dates, string sorting and so
on. We will disregard this kind of behavior as well.

Implementation-Defined Behavior

Due to implementation-defined behavior, calling C a
programming language is not quite accurate. In real-
ity C is a huge family of languages, each of which can

Figure 1: Alexander’s Star: 7.24× 1034 positions

be called a dialect of C ; in the C standard, a dialect
of C is referred to as a conforming implementation.

Let us consider C99 [7], which is still the most used
version of C for the development of embedded systems.
In C99, there are 112 implementation-defined behav-
iors. By definition, each implementation-defined be-
havior can be defined in 2 or more ways. This implies
that the number of languages that can be legitimately
called “C” is greater than 2112 ≈ 5.19×1033. Actually,
choosing integer types in {8, 16, 32, 64} respecting the
constraints of C99 brings us to more than 1035 pos-
sible dialects. For comparison, Alexander’s Star, a
puzzle similar to the Rubik’s Cube, in the shape of a
great dodecahedron, has a smaller number of distinct
positions: see Figure 1.

Generally speaking, a given compiler can imple-
ment, via options, several such dialects of C. For an
instance, GCC/x86 64 —the compiler mentioned in
the exercise opening this paper—, implements, via
options, thousands of dialects of C. On the other
hand, GCC/x86 64, does not implement any di-
alect in which a char is 16 bits: Texas Instruments’
TMS320C28x optimizing C/C++ compiler does [13];
and the Freescale/CodeWarrior compiler for HC(S)12
allows selecting, via command-line options, the sizes
of all integer and floating-point types [3]. Only by
taking into account the compiler options that are
actually used in the build, can we assign a meaning
to a C program. This is further complicated by the
fact that compiler options may be given:

• on the command line;

• in environment variables;

• in configuration files.

Note also that different translation units can be com-
piled with different options.
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There Is No Easy Solution

While it is possible to write C code that reduces
the dependencies on implementation-defined behav-
ior, this is harder than most people would expect.
MISRA C:2012 [11] goes a long way in this direc-
tion, and it also prescribes documentation of any
implementation-defined behaviors that are relevant
to the program at hand, but this is not sufficient. For
instance, many people believe that, just by using the
types of <stdint.h> instead of, say, short and int,
the program will be immune from the implementation-
defined behavior depending on the sizes of basic types.
Unfortunately, this is not true. Consider:

# include <stdbool .h>
# include <stdint .h>

bool add_overflow ( uint16_t x,
uint16_t y) {

return (x + y) < x;
}

Overflow will not be detected on machines where
the size of int is larger than 16 bits.1 To make the
function work as expected on all machines, it should
be written as follows:

# include <stdbool .h>
# include <stdint .h>

bool add_overflow ( uint16_t x,
uint16_t y) {

return ( uint16_t )(x + y) < x;
}

There are other aspects that compound to the num-
ber of C dialects: predefined macros and algorithms
for searching include files.

Predefined Macros

Every implementation can (and usually does) provide
predefined macros: such macros may begin with an
underscore, and thus be part of the implementation
name space, or not begin with an underscore, and
thus be part of the user name space [9, Par. 6.10.8].
Often the predefined macros are functions of the
compiler options. For instance, Microchip’s MPLAB
C18 C Compiler predefines macro __18F258 to the
constant 1 if the command-line option. -p18f258
was given [10].

1Note also that the returned expression does not violate any
MISRA C guideline.

Included Files

Another implementation-defined aspect of C that
adds considerable complication concerns the selection
of header files that are the subject of #include di-
rectives [9, Par. 6.10.2]. Places that may or may not
be searched by compilers, in orders that differ from
compiler to compiler and that may be influenced by
compiler options, involve:

• whether the header is specified with < > or " ";

• paths relative to the compiler executable;

• the path of the main file;

• the paths of the direct and/or indirect includers;

• the current working directory of the compiler
process;

• paths specified (directly or indirectly) by com-
piler options.

Taking into account predefined macros and algo-
rithms for searching included files, it is clear that the
number of C dialects is much more than our previous
rough estimation suggested.

Consequences for Static Analysis

The huge variety in C dialects implies that static
analysis tools that are supposed to work with multiple
C dialects must:

1. Specify which sets of dialects are supported, at
least in terms of the supported toolchains.

2. Provide practical ways to obtain full information
about the build to be analyzed: not just the
source files, but also which compiler (and linker,
and librarian) are used and with which options.

3. Adapt the analysis to the build.

In other words, someone must adapt the tool execu-
tion to the particular dialect implemented by that
compiler with that set of options, possibly for each
translation unit that composes the system being ana-
lyzed. Who is that “someone”? It can be:

• The user, who must be aware of the fact that
properly taking into account all relevant pecu-
liarities of the build is a daunting and very error-
prone task. And, of course, it requires a tool
that supports these variations. Moreover, if any-
thing changes in the build procedure (e.g., one
compilation option), tool configuration must be
adapted correspondingly.
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• The tool itself: this is much, much better for the
user. But, of course, considerable sophistication
is required in the tool design and implementation.
Moreover, the tool must be kept up to date with
the evolution of the toolchains it supports.

The importance of all this cannot be stressed
enough: we have seen many projects whose MISRA
C compliance [11] was completely led astray due to
misconfiguration of the actual language dialect im-
plemented by the build being analyzed, and this in
safety-critical projects. One might argue that for
some simple rules, analysis can be reliably conducted
without taking into account the language dialect.
This is not so: if you consider predefined macros and
the algorithm used to search header files, you realize
that not capturing those correctly means that, in
general, you would be analyzing code that is different
from the code that has been compiled and embedded
into the device.

Here is an example of how this fatal mistake might
happen: we have code implementing two versions of
a the (supposedly) same dispatch table; a fast one
based on GCC’s computed gotos2 and a standard one
based on a switch statement. The intention is to use
the former only with GCC and when optimization
is enabled and to use the latter in all other cases;
the two cases being discriminated by the predefined
macros __GNUC__ and __OPTIMIZE__. It is clear that,
if predefined macros are not correctly captured, we
cannot reliably check compliance with respect to the
MISRA C guidelines restricting the use of goto state-
ments and the use of compiler extensions.

Answer to the Exercise

The following C function source code is 647 charac-
ters long. The function can return all integer values
from 0 to 767, depending on how it is compiled with
GCC/x86 64 (version 8 or later).

unsigned return_value (void) {
typedef enum { Z } S;
typedef enum {

I = (( int )-1U/2 == (int )(-1U/2))
? (int )-1U : (int )(-1U/2)

} L;
struct {

int f:8;
} s = { 255 };
unsigned m = 0;

2A GCC extension whereby one can get the address of a label
defined in the current function, store it, and then use it as
the target of goto statements.

m += ((( char )-1) < 0) ? 1 : 0;
m += (s.f < 0) ? 2 : 0;
m += ( sizeof (S) < sizeof (L)) ? 4 : 0;

#ifdef __OPTIMIZE__
m += 8;

#endif
m += ( sizeof (void *) == 8)

? 16 : 0;
#if ! defined ( __STDC_HOSTED__ ) \

|| __STDC_HOSTED__ == 0
m += 32;

#endif
#ifdef __STDC_VERSION__

m += ( __STDC_VERSION__ % 4)*64;
#else

m += 192;
#endif
# ifndef __STRICT_ANSI__

m += 256;
m += ( sizeof ("??-") != 4) ? 256 : 0;

#endif
return m;

}

For example, you can obtain

0, with -funsigned-char -funsigned-bitfields
-m32 -fhosted -std=c11;

1, with -fsigned-char -funsigned-bitfields
-m32 -fhosted -std=c11;

7, with -fsigned-char -fsigned-bitfields
-fshort-enums -m32 -fhosted -std=c11;

42, with -funsigned-char -fsigned-bitfields
-O2 -m32 -ffreestanding -std=c11;

443, with -fsigned-char -fsigned-bitfields -O2
-m64 -ffreestanding -std=gnu17;

640, with -funsigned-char -funsigned-bitfields
-m32 -fhosted -std=gnu17 -trigraphs.

Source code and supporting scripts that allow re-
producing this experiment, both under Windows
and Linux are available at https://bugseng.com/
that-is-c-baby-c. There is a main program that
can be invoked in two ways:

1. with a numeric argument between 0 and 767, the
program prints the options to be given to GCC
in order to obtain the specified value;

2. without any argument, the program prints the
value returned by return_value().
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In addition, there are scripts test.bat and test.sh
to automatically check all the possible values. Here
is a sample session, where backslashes mark newlines
that are in the paper and not in the actual input/out-
put and option -w is used to suppress a warning
concerning trigraphs:

$ gcc -w main.c
$ a.exe 100
-funsigned-char -funsigned-bitfields \

-fshort-enums -m32 -ffreestanding -std=c99
$ gcc -funsigned-char \
-funsigned-bitfields -fshort-enums -m32 \
-ffreestanding -std=c99 main.c

$ a.exe
100
$ test.bat
tests 0..767 succeeded

Conclusion

Theoretically speaking, C can be seen as an infinite
family of C dialects: that big is the latitude the
C standards allow to conforming implementations.
In practice, considering the number of compilers in
use today and the combinations of implementation-
defined behaviors they support, the number of C
dialects in use is a finite but large number (on the
order of tens of thousands).

In this paper, we have shown how failure to cap-
ture the C dialect for which a piece of C code is
intended makes it impossible, in general, to draw any
conclusion about its behavior. As a consequence, no
analysis tool can draw any reliable conclusion about
a piece of C code unless all relevant information is
available. Unfortunately, in industry, including in
safety-critical sectors, there is little awareness of this
fundamental property of C: many practitioners seem
to believe that they can use a static analysis tool
without worrying about the fact that their compi-
lation toolchain and the analysis tool agree on the
implementation-defined aspects of the language. In
this crucial mistake, they are not helped by tool
vendors bragging about so-called “tool certificates”:
upon close inspection it can often be seen that neither
the tool nor the “certificate” pay sufficient attention
to this matter. It is not by chance that functional
safety standards, such as CENELEC EN 50128 [2],
ISO 26262 [4] and RTCA DO-178C [12], clearly state
that, while applications can be certified for use, tools
employed in their development or verification can
only be qualified in the specific context of their use:
for a C static analysis tool, such context includes the

C dialects that are actually used in the different parts
of the project.
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