
The MISRA C Coding Standard:
A Key Enabler for the Development of Safety-

and Security-Critical Embedded Software
Roberto Bagnara*

BUGSENG and University of Parma
Parma, Italy

Email: roberto.bagnara@bugseng.com

Abramo Bagnara
BUGSENG
Parma, Italy

Email: abramo.bagnara@bugseng.com

Patricia M. Hill
BUGSENG
Parma, Italy

Email: patricia.hill@bugseng.com

Abstract—Building embedded control systems that embody
industry best practices for safety and security is a challenging
task: doing so in unrestricted C is even more challenging. C is a
general-purpose programming language, partially defined by an
ISO standard written in natural language with a slow evolution
over the last 40+ years. Its many strong points make it the
most used language for the development of embedded systems.
Unfortunately, the origin of C’s strength is also the origin of
C’s weakness: the language has many aspects that are not fully
defined, it has some rather obscure aspects that can easily induce
programmers into error, and it has no run-time error detection
facilities. MISRA C is a coding standard defining a subset of the
C language, initially targeted at the automotive sector, but now
adopted across all industry sectors that develop C software in
safety- and/or security-critical contexts. In this talk, we introduce
MISRA C, its key role in the development of critical embedded
systems’ software and its relevance to industry safety and security
standards. We explain why and how MISRA C retains 95% of
the advantages of C and eradicates 95% of its drawbacks: with
the right tools, training and professional expertise, the adoption
of MISRA C, besides satisfying some important requirements im-
posed by safety standards, can significantly decrease development
times and costs.

I. INTRODUCTION

The development of the C programming language started 50
years ago in 1969 at Bell Labs where the language was used
for the development of the Unix operating system [1]. Despite
frequent criticism, C is still one of the most used programming
languages overall1 and the most used one for the development
of embedded systems [2], [3]. There are several reasons why
C has been and is so successful:

• C compilers exist for almost any processor, from tiny
DSPs used in hearing aids to supercomputers.

• C compiled code can be very efficient and without hidden
costs, i.e., programmers can roughly predict running

* While Roberto Bagnara is a member of the MISRA C Working Group and
of ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group,
the views expressed in this paper are his and his coauthors’ and should not
be taken to represent the views of either working group.

1Source: TIOBE Index for June 2018, see https://www.tiobe.com/
tiobe-index/.

times even before testing and before using tools for worst-
case execution time approximation.2

• C allows writing compact code thanks to limited verbosity
and the availability of many built-in operators.

• C is defined by international standards: it was first
standardized in 1989 by the American National Stan-
dards Institute (this version of the language is known as
ANSI C) and then by the International Organization for
Standardization (ISO) [7], [8], [9], [10], [11], [12].

• C, possibly with extensions, allows easy access to the
hardware and this is a must for the development of
embedded software.

• C has a long history of usage in all kinds of systems
including safety-, security-, mission- and business-critical
systems.

• C is widely supported by all sorts of tools.
Claims that C would eventually be superseded by C++ do not
seem very plausible, at least as far as the embedded software
industry is concerned. In addition to the already-stated mo-
tives, there is language size and stability: C++ has become a
huge, very complex language; moreover it is evolving at a pace
that is in sharp contrast with industrial best practices. The
trend whereby C++ rapid evolution clashes with the industry
requirements for stability and backward compatibility was put
in black-and-white at a recent WG21 meeting,3 where the
following statement was agreed upon [13]: “The Committee
should be willing to consider the design / quality of proposals
even if they may cause a change in behavior or failure to
compile for existing code.”

The characteristics that made the C programming language
so successful have downsides: writing safe and secure appli-
cations in C requires particular care. The solution mandated
or strongly suggested by all applicable industrial standards is

2This is still true for implementations running on simple processors, with
a limited degree of caching and internal parallelism. Prediction of maximum
running time without tools becomes outright impossible for current multi-
core designs such as Kalray MPPA, Freescale P4080, or ARM Cortex-A57
equivalents (see, e.g., [4], [5], [6]).

3WG21 is a common shorthand for ISO/IEC JTC1/SC22/WG21, a.k.a.
the C++ Standardization Working Group. The cited meeting took place in
Jacksonville, FL, USA, March 12–17, 2018.

www.embedded-world.eu



language subsetting. In this paper, we introduce MISRA C,
which is increasingly recognized as the most authoritative
subset of the C programming language in all industry sectors.
In doing so, we try to clear up some misconceptions around
the language, its standardization process and MISRA C itself.

The plan of the paper is the following: Section II intro-
duces the main shortcomings of C, explaining why C is (not
completely) defined as it is, why it is not going to change
substantially any time soon, and why subsetting it is required;
Section III introduces the MISRA project and MISRA C focus-
ing on its last edition, MISRA C:2012, with its amendments
and addenda; Section IV presents a few MISRA C guidelines
in order to convey the look and feel of the coding standard;
Section V emphasizes some points that are crucial for a proper
understanding of MISRA C; Section VI emphasizes some key
factors for its successful adoption; Section VII concludes.

II. C NON-DEFINITE BEHAVIOR

The main source of problems with C comes from the notion
of behavior, defined as external appearance or action [10,
Par. 3.4] and the so-called as-if rule, whereby the compiler
is allowed to do any transformation that ensures that the
“observable behavior” of the program is the one described
by the Standard [10, Par 5.1.2.3#5].4 While all compiled
languages have a sort of as-if rule that allows optimized
compilation, one peculiarity of C is that it is not fully defined.
There are four classes of not fully defined behaviors (in the
sequel, collectively referred to as “non-definite behaviors”):
implementation-defined behavior: unspecified behavior

where each implementation documents how the choice
is made [10, Par. 3.4.1]; e.g., the sizes and precise
representations of the standard integer types;

locale-specific behavior: behavior that depends on local con-
ventions of nationality, culture, and language that each
implementation documents [10, Par. 3.4.2]; e.g., character
sets and how characters are displayed;

undefined behavior: behavior, upon use of a non-portable
or erroneous program construct or of erroneous data,
for which this International Standard imposes no require-
ments [10, Par. 3.4.3]; e.g., attempting to write a string
literal constant or shifting an expression by a negative
number or by an amount greater than or equal to the
width of the promoted expression;

unspecified behavior: use of an unspecified value, or other
behavior where this International Standard provides two
or more possibilities and imposes no further requirements
on which is chosen in any instance [10, Par. 3.4.4]; e.g.,
the order in which sub-expressions are evaluated.

Setting aside locale-specific behavior, whose aim is to
avoid some nontechnical obstacles to adoption, it is important
to understand the intimate connection between non-definite
behavior and the relative ease with which optimizing compilers

4In this paper, we refer to the C99 language standard [9] because this is the
most recent version of the language that is targeted by the current version of
MISRA C [14]. All what is said about the C language itself applies equally,
with only minor variations, to all the published versions of the C standard.

can be written. In particular, C data types and operations can
be directly mapped to data types and operations of the target
machine. This is the reason why the sizes and precise repre-
sentations of the standard integer types are implementation-
defined: the implementation will define them in the most
efficient way depending on properties of the target CPU
registers, ALUs and memory hierarchy.

Overflow on signed integer types is undefined behavior
because the C Standard allows different representations of
signed integers, such as two’s complement, ones’ complement
and sign-magnitude. For the latter two possibilities it is
implementation-defined whether the negative zero bit pattern
is a trap representation.5 The C compiler can thus assume
signed integer overflow cannot happen, omit all checks for
overflow, and compile, e.g.,

� �
int always_true(int v) {
return (v + 1 > v) ? 1 : -1;

}
� �
as if it was

� �
int always_true(int v) {
return 1;

}
� �
Incidentally, implementation latitude on the representation of
signed integers is also the reason why all bitwise operation on
signed integers have implementation-defined behavior.

Attempting to write on string literal constants is undefined
behavior because they may reside in read-only memory and/or
may be merged and shared: for example, a program containing
"String" and "OtherString" may only store the latter
and use a suffix of that representation to represent the former.

The reason why shifting an expression by a negative number
or by an amount greater than or equal to the width of the
promoted expression is undefined behavior is less obvious.
What sensible semantics can be assigned to shifting by a
negative number of bit positions? Shifting in the opposite
direction is a possible answer, but this is usually not supported
in hardware, so it would require a test, a jump and a negation.
It is a bit more subtle to understand why the following is
undefined behavior:

� �
uint32_t i = 1;
i = i << 32; /* Undefined behavior. */
� �

5Trap representations are particular object representations that do not
represent values of the object type. Simply reading a trap representation
(except by an lvalue of character type) is undefined behavior. For instance,
in a memory architecture with explicit parity bits, a representation with the
wrong parity bit can be a trap representation.



One would think that pushing 32 or more zeroes to the right of
i would give zero. However, this does not correspond to how
some architectures implement shift instructions. IA-32, for
instance [15, section on “IA-32 Architecture Compatibility”]:

The 8086 does not mask the shift count. However,
all other IA-32 processors (starting with the Intel
286 processor) do mask the shift count to 5 bits,
resulting in a maximum count of 31. This masking
is done in all operating modes (including the virtual-
8086 mode) to reduce the maximum execution time
of the instructions.

This means that, on all IA-32 processors starting with the Intel
286, a direct mapping of C’s right shift to the corresponding
machine instruction will give:

� �
i = i << 32;

/* This is equivalent to... */
i = i << (32 & 0x1F);

/* ... this, i.e., ... */
i = i << 0;

/* this, which is a no-op. */
� �
So also for this case, for speed and ease of implementation,
C leaves the behavior undefined.

The recurring request to WG146 to “fix the language” is off
the mark. In fact, weakness of the C language comes from its
strength:

• Non-definite behavior is the consequence of two factors:
1) the ease of writing efficient compilers for almost

any architecture;
2) the existence of many compilers by different ven-

dors and the fact that the language is standardized.
Concerning the second point, it should be considered that,
in general, ISO standardizes existing practice taking into
account the opinions of the vendors that participate in
the standardization process, and with great attention to
backward compatibility: so, when diverging implementa-
tions exist, non-definite behavior might be the only way
forward.

• The objective of easily obtaining efficient code with no
hidden costs is the reason why, in C, there is no run-time
error checking.

• Easy access to the hardware entails the facility with which
the program state can be corrupted.

• Code compactness is one of the reasons why the language
can easily be misunderstood and misused.

Summarizing, the C language can be expected to remain
faithful to its original spirit and to be around for the foresee-
able future, at least for the development of embedded systems.
However, it is true that several features of C do conflict
with both safety and security requirements. For this reason,
language subsetting is crucial for critical applications. This

6Short for ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Work-
ing Group.

was recognized as early as 1995 [16] and is now mandated
or recommended by all safety- and security-related indus-
trial standards, such as IEC 61508 (industrial), ISO 26262
(automotive), CENELEC EN 50128 (railways), RTCA DO-
178B/C (aerospace) and FDA’s General Principles of Software
Validation [17]. Today, the most authoritative language subset
for the C programming language is MISRA C, which is the
subject of the next section.

III. MISRA C

The MISRA project started in 1990 with the mission of
providing world-leading best practice guidelines for the safe
and secure application of both embedded control systems and
standalone software. The original project was part of the UK
Governments “SafeIT” programme but it later became self-
supporting, with MIRA Ltd, now HORIBA MIRA Ltd, pro-
viding the project management support. Among the activities
of MISRA is the development of guidance in specific technical
areas, such as the C and C++ programming languages, model-
based development and automatic code generation, software
readiness for production, safety analysis, safety cases and so
on. In November 1994, MISRA published its “Development
guidelines for vehicle based software”, a.k.a. “The MISRA
Guidelines” [18]: this is the first automotive publication con-
cerning functional safety, more than 10 years before work
started on ISO 26262 [19].

The MISRA guidelines [18] prescribed the use of “a
restricted subset of a standardized structured language.” In
response to that, the MISRA consortium began work on the
MISRA C guidelines: at that time Ford and Land Rover
were independently developing in-house rules for vehicle-
based C software and it was recognized that a common activity
would be more beneficial to industry. The first version of the
MISRA C guidelines was published in 1998 [20] and received
significant industrial attention.

In 2004, following the many comments received from its
users —many of which, beyond expectation, were in non-
automotive industries— MISRA published an improved ver-
sion of the C guidelines [21]. In MISRA C:2004 the intended
audience explicitly became constituted by all industries that
develop C software for use in high-integrity/critical systems.
Due to the success of MISRA C and the fact that C++ is also
used in critical contexts, in 2008 MISRA published a similar
set of MISRA C++ guidelines [22].

Both MISRA C:1998 and MISRA C:2004 target the 1990
version of the C Standard [7]. In 2013, the revised set of
guidelines known as MISRA C:2012 was published [14]. In
this version there is support both for C99 [9] as well as C90 (in
its amended and corrected form sometimes referred to as C95
[8]). With respect to previous versions, MISRA C:2012 covers
more language issues and provides a more precise specification
of the guidelines with improved rationales and examples.
Figure 1 shows part of the relationship and influence between
the MISRA C/C++ guidelines and other sets of guidelines.
It can be seen that MISRA C:1998 influenced Lockheed’s

www.embedded-world.eu



M
IS

R
A

 C
+

+
M

IS
R

A
 C

C
o

m
p

a
n

y
 

sp
e

ci
fi 

c
Rover

MISRA

C++:2008

JSF++ UK MoD

MISRA

C:2004

MISRA

C:2012

MISRA

C:1998

Ford

Fig. 1. Origin and history of MISRA C

“JSF Air Vehicle C++ Coding Standards for the System Devel-
opment and Demonstration Program” [23], which influenced
MISRA C++:2008, which, in turn, influenced MISRA C:2012.
The activity that led to MISRA C++:2008 was also encouraged
by the UK Ministry of Defence which, as part of its Scientific
Research Program, funded a work package that resulted in the
development of a “vulnerabilities document” (the equivalent
of Annex J listing the various behaviors in ISO C, which is
missing in ISO C++, making it hard work to identify them
and to ensure they are covered by the guidelines). More-
over, MISRA C deeply influenced NASA’s “JPL Institutional
Coding Standard for the C Programming Language” [24] and
several other coding standards (see, e.g., [25], [26], [27]).

The MISRA C guidelines are concerned with aspects of
C that impact on the safety and security of the systems,
whether embedded or standalone: they define “a subset of
the C language in which the opportunity to make mistakes is
either removed or reduced” [14]. The guidelines ban critical
non-definite behavior and constrain the use of implementation-
defined behavior and compiler extensions. They also limit
the use of language features that can easily be misused or
misunderstood. Overall, the guidelines are designed to improve
reliability, readability, portability and maintainability.

There are two kinds of MISRA C guidelines.
Directive: a guideline where the information concerning com-

pliance is generally not fully contained in the source
code: requirements, specifications, design, . . . all may
have to be taken into account. Static analysis tools may
assist in checking compliance with respect to directives
if provided with extra information not derivable from the
source code.

Rule: a guideline where information concerning compliance
is fully contained in the source code. Discounting un-
decidability, static analysis tools should, in principle, be
capable of checking compliance with respect to the rule.

A crucial aspect of MISRA C is that it has been designed to
be used within the framework of a documented development
process where justifiable non-compliances will be authorized
and recorded as deviations. To facilitate this, each MISRA C
guideline has been assigned a category.

Mandatory: C code that complies to MISRA C must comply
with every mandatory guideline; deviation is not permit-
ted.

Required: C code that complies to MISRA C shall comply
with every required guideline; a formal deviation is
required where this is not the case.

Advisory: these are recommendations that should be followed
as far as is reasonably practical; formal deviation is not
required, but non-compliances should be documented.

Every organization or project may choose to treat any re-
quired guideline as if it were mandatory and any advisory
guideline as if it were required or mandatory. The adoption of
MISRA Compliance:2016 [28] allows advisory guidelines to
be downgraded to “Disapplied” when a check for compliance
is considered to have no value, e.g., in the case of adopted
code7 that has not been developed so as to comply with the
MISRA C guidelines. Of course, the decision to disapply
a guideline should not be taken lightly: [28] prescribes the
compilation of a guideline recategorization plan that must
contain, among other things, the rationale for any decision
to disapply a guideline.

Each MISRA C rule is marked as decidable or undecidable
according to whether answering the question “Does this code
comply?” can be done algorithmically. Rules are marked ‘un-
decidable’ whenever violations depend on run-time (dynamic)
properties such as the value contained in a modifiable object

7Such as the standard library, device drivers supplied by the compiler
vendor or the hardware manufacturer, middleware components, third party
libraries, automatically generated code, legacy code, . . .



Suppose, towards a contradiction, that we can complete the following C source code file halt.c:

� �
#include <stdio.h>
int halts(const char *C_program) {
/* Returns 1 if C_program is a valid C program source that terminates,

0 otherwise. The function works perfectly for every input and always
returns the correct result in finite time.*/

/* ... */
}
int main(int argc, char **argv) {
while (halts(argv[1])) {
puts("This program will terminate");

}
puts("This program will not terminate");
return 0;

}
� �
We would then be able to compile it and execute the resulting executable as follows:

$ cc halt.c -o halt.exe
$ halt.exe halt.c

There are two possible outcomes:
1) halt.exe applied to halt.c prints

This program will terminate
This program will terminate
... [infinite repetitions]

so that in fact it will not terminate!
2) halt.exe applied to halt.c prints

This program will not terminate

but it has just terminated!
We reached a contradiction in both cases, hence the function halts() cannot be written!

Fig. 2. Termination: the father of all undecidable problems

or whether control reaches a particular point. Conversely,
rules are marked ‘decidable’ whenever violations depend only
on compile-time (static) properties, such as the types of the
objects or the names and the scopes of identifiers. For rules
marked ‘undecidable’, no algorithm can exist that allows emit-
ting a message if and only if the rule is violated. Termination
is a notoriously undecidable problem: see Figure 2 for a C-
based proof of this fundamental theorem of computer science.
Starting from the undecidability of termination, it is possible to
prove that most interesting program properties (e.g., whether
a program can result into a division by zero, a buffer overflow,
a memory leak) are undecidable as well.

For rules marked ‘decidable’, although it is theoretically
possible for a tool to emit a message if and only if the
rule is violated, it may not be able to decide because of the
limited computational resources. However, for a rule marked
‘undecidable’, any tool will have to deal with a don’t know
answer in addition to yes or no. In either case, if it is not
practical (or even possible) for the tool to decide if the code

is compliant with respect to a guideline at a particular program
point, it can:

• suppress the don’t know answer (i.e., possibly false
negatives, no false positives);

• emit the don’t know answer as a yes message (i.e., no
false negatives, possibly false positives);

• a combination of the above (i.e., both possibly false
negatives and possibly false positives);

• emit the don’t know answer as a caution message (i.e.,
no false negatives, confined, possibly false positives).

The majority of the MISRA C guidelines are decidable,8

and thus compliance can be checked by algorithms that:

• do not need nontrivial approximations of the value of
program objects;

• do not need nontrivial control-flow information.

8On a total of 173 guidelines, 36 rules and 4 directives involve undecidable
program properties [29].

www.embedded-world.eu



Of course, these algorithms can still be very complex. For
instance, the nature of the translation process of the C lan-
guage, which includes a preprocessing phase, is a source
of complications: the preprocessing phase must be tracked
precisely, and compliance may depend on the source code
before preprocessing, on the source code after preprocessing,
or on the relationship between the source code before and after
preprocessing.

MISRA C rules are also classified according to the amount
of code that needs to be analyzed in order to detect all
violations of the rule.
Single Translation Unit: all violations within a project can

be detected by checking each translation unit indepen-
dently.

System: identifying violations of a rule within a translation
unit requires checking more than the translation unit in
question, if not all the source code that constitutes the
system.

MISRA C:2012 Amendment 1 [30], published in 2016,
enhances MISRA C:2012 so as to extend its applicability to
industries and applications where data-security is an issue.
It includes 14 new guidelines (1 directive and 13 rules) to
complete the coverage of ISO/IEC TS 17961:2013 [31], a.k.a.
C Secure Coding Rules, a set of rules for secure coding
in C.9 Details of such complete coverage are provided in [33].
A similar document [34] shows that, with Amendment 1,
coverage of CERT C Coding Standard is almost complete and
that, consequently, MISRA C is today the language subset of
choice for all industries developing embedded systems in C
that are safety- and/or security-critical [35].

For the rest of this paper, all references to MISRA C will be
for the latest published version MISRA C:2012 [14] including
its Technical Corrigendum 1 [36] and Amendment 1 [30]:
these will be consolidated into the forthcoming first revision
of MISRA C:2012 [37]. It should be noted that both the
MISRA C and MISRA C++ projects are active and constantly
improving the guidelines and developing new works: for
instance, the MISRA C Working Group is currently working
at adding support for C11 [11] and, in response to community
feedback, at further enhancing the guidance on undefined/un-
specified behaviors [37].

IV. SELECTED MISRA C GUIDELINES

In this section we present a very small selection of
MISRA C guidelines in order to convey the overall flavor of
the coding standard.

Directive 4.6

typedefs that indicate size and signedness should be
used in place of the basic numerical types

Category Advisory
Applies to C90, C99

The directive advises against the use of the built-in nu-
merical types like char, short, unsigned, double in

9This technical specification has been slightly amended in 2016 [32].

favor of typedefs like, e.g., int8_t, int16_t, uint32_t,
float64_t where the size and signedness must be explicit
and match the actual size and signedness provided by the
implementation. The rationale is that being aware of the
signedness and size of the used data types is often crucial to
ensure correctness of the algorithms. Moreover, in situations
where the amount of memory being allocated is important,
using specific-length types makes it clear how much storage
is being reserved for each object. Following this directive,
portability is greatly improved, but adherence to this guideline
alone does not guarantee portability (e.g., promotion may or
may not take place depending on the size of int).

Rule 1.1

The program shall contain no violations of the
standard C syntax and constraints, and shall not
exceed the implementation’s translation limits

Category Required
Analysis Decidable, Single Translation Unit
Applies to C90, C99

In order to comply to this rule, the program:
• should only use features in the chosen version of the C

Standard;
• should not exceed the implementation’s translation limits;
• may use language extensions.

Moreover, except when using language extensions, a program
must not:

• contain any violations of the language syntax;
• contain any violations of the constraints.

The reason is that language features that are outside the
supported versions of C have not been considered when
developing the MISRA guidelines. Furthermore, a conforming
implementation does not need to generate a diagnostic when
a translation limit is exceeded and an executable may be
generated that does not work as expected. In addition, some
non-conforming implementations fail to diagnose constraint
violations and this, again, may result into undefined behavior.

Rule 3.2

Line-splicing shall not be used in // comments
Category Required
Analysis Decidable, Single Translation Unit
Applies to C99
If a // commented line ends with a back-slash followed by a
new-line, then the following line is part of the comment, and,
if this was not intended, an important line of code maybe lost.
The following example shows how a seemingly-innocuous
path separator at the end of the comment may accidentally
comment out the next line of code:

� �
// see critical.* in c:\project\src\
critical_function();
� �



Rule 9.1

The value of an object with automatic storage dura-
tion shall not be read before it has been set

Category Mandatory
Analysis Undecidable, System
Applies to C90, C99
Note that array elements and structure members are considered
as discrete objects and they must be (recursively) initialized.
The rationale is that, according to the C Standard, objects with
automatic storage duration are not automatically initialized and
can therefore have indeterminate values.10 Reading them while
their value is indeterminate is undefined behavior.11

Rule 11.4

A conversion should not be performed between a
pointer to object and an integer type

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to C90, C99
To avoid problems like misaligned pointers and truncation,
integer to pointer conversion requires a deviation whenever
it is necessary to address memory mapped registers or other
hardware features. Conversion from pointer to integer which
can also result in undefined behavior requires a deviation for
the very rare cases, e.g., to perform bitwise manipulation on
pointers, where this is needed. Note that the only integer types
guaranteed to hold pointer values without truncation are the
optional C99 types intptr_t and uintptr_t.

Consider the following example:

� �
int main(int argc, char **argv) {
uintptr_t v = (uintptr_t)argv;
fdisplay("%d\n", memcmp(&v, &argv,

sizeof(uintptr_t)));
return 0;

}
� �
Even assuming that uintptr_t and char ** have the
same size, the result is still implementation-defined:12 not all
machines use the flat memory model and uintptr_t is
always an integer.

The following example may trigger undefined behavior:13

� �
int main(int argc, char **argv) {
int16_t adr = (int16_t)argv;
return 0;

}
� �
10In contrast, in conforming implementations objects with static storage

duration are automatically initialized to zero unless initialized explicitly.
11C99 Undefined 10: the value of an object with automatic storage duration

is used while it is indeterminate (6.2.4, 6.7.8, 6.8).
12C99 Implementation-defined J.3.7 1: the result of converting a pointer to

an integer or vice versa (6.3.2.3).
13C99 Undefined 21: conversion of a pointer to an integer type produces

a value outside the range that can be represented (6.3.2.3).

Another undefined behavior is caused by the following:14

� �
int main(void) {
float64_t a = 1.0;
intptr_t i = (intptr_t)&a;
int32_t *b = (int32_t*)i;
*b = 0;
fdisplay("%f\n", a);
return 0;

}
� �
Rule 13.2

The value of an expression and its persistent side ef-
fects shall be the same under all permitted evaluation
orders

Category Required
Analysis Undecidable, System
Applies to C90, C99

Between two sequence points the evaluation order is un-
specified, so the following situations can lead to undefined
behavior:15

• modifying an object more than once;
• modifying and reading an object, unless reading is nec-

essary to store in the object;
• reading a volatile object more than once;
• modifying a volatile object more than once.

Note that the logical and and or operators, the conditional
operator, and the comma operator have well defined operand
evaluation orders.

In the following example, the function main will return 1
or -1 depending on the evaluation order:16

� �
static int32_t next(void) {
static int32_t counter = 0;
++counter;
return counter;

}

int main(void) {
return next() - next();

}
� �
In the next example, TCNT1 and TCNT2 are memory

mapped hardware registers, and it is unspecified which side
effect is triggered first:17

14C99 Undefined 34: an object has its stored value accessed other than by
an lvalue of an allowable type (6.5).

15C99 Undefined 32: between two sequence points, an object is modified
more than once, or is modified and the prior value is read other than to
determine the value to be stored (6.5).

16C99 Unspecified 15: the order in which subexpressions are evaluated
and the order in which side effects take place, except as specified for the
function-call (), &&, ||, ?:, and comma operators (6.5).

17C99 Unspecified 16: the order in which the function designator, argu-
ments, and subexpressions within the arguments are evaluated in a function
call (6.5.2.2).

www.embedded-world.eu



� �
static volatile uint16_t TCNT1;
static volatile uint16_t TCNT2;

static int32_t f(uint16_t tc1, uint16_t tc2);

int main(void) {
return f(TCNT1, TCNT2);

}
� �
V. UNDERSTANDING MISRA C

In this section we highlight important aspects of MISRA C
that are often misunderstood.

A. MISRA C Is Part of a Process

MISRA C has been designed to be used in the framework
of a documented software development process. The process
must ensure, e.g.:

• that software requirements are complete, unambiguous
and correct;

• that design specifications reaching the coding phase are
correct, consistent with the requirements and do not
contain any other functionality;

• that object modules produced by the compiler behave as
specified in the designs;

• that object modules have been tested, individually and
together, to identify and eliminate errors.

Clearly, MISRA C should be used before code reaches the
review and unit testing phases, for otherwise a lot of rework
and retesting has to be expected.

Full requirements for safety-related software development
processes are outside the scope of MISRA C and they are
left to the applicable industrial standards, such as IEC 61508,
ISO 26262, RTCA DO-178C, CENELEC EN 50128 and
IEC 62304. MISRA C does require some process activities. In
particular, in order to use MISRA C, it is necessary to develop
and document:

• a compliance matrix, showing how compliance with the
MISRA C guidelines is checked;

• a deviation process by which justifiable non-compliances
can be authorized and recorded.

The software development process should also document the
steps that are taken to demonstrate that run-time errors have
been avoided, e.g., to make sure that:

• the execution environment provides sufficient resources,
especially processing time/power and stack space;

• run-time errors, such as arithmetic overflows, are absent
from (areas of) the program (e.g., by virtue of static
and/or run-time checks).

There are activities that MISRA C endorses without provid-
ing specific prescriptions. For instance, it is well known that
a consistent style assists programmers in understanding their
own code and the code written by others. Thus MISRA C
encourages the adoption of programming style guidelines, but
it has always left this matter to individual organizations: “In

addition to adopting the subset, an organisation should also
have an in-house style guide. [. . . ] However the enforcement
of the style guide is outside the scope of this document” [21,
Section 4.2.2] (see also [14, Section 5.2.2]). Similarly, many
software process standards recommend metrics as a practical
means to identify code that may require special attention (e.g.,
additional review and/or testing). The nature of the metrics
being collected and how they are used is left to individual
organizations: MISRA C does not make recommendations in
that area, even though the HIS metrics can be considered a de
facto standard [38].

B. MISRA C: Error Prevention, Not Bug Finding

As said earlier, MISRA C cannot be separated from the
process of documented software development it is part of. In
particular, the use of MISRA C in its proper context is part of
an error prevention strategy which has little in common with
bug finding, i.e., the application of automatic techniques for
the detection of instances of some software errors. This point
is so rarely understood that it deserves proper explanation.

To start with, the violation of a guideline is not necessarily
a software error. For instance, let us consider Rule 11.4, which
advises against converting integers to object pointers and vice-
versa. There is nothing intrinsically wrong about converting
an integer constant to a pointer when it is necessary to
address memory mapped registers or other hardware features.
However, such conversions are implementation-defined and
have undefined behaviors (due to possible truncation and the
formation of invalid and/or misaligned pointers), so that they
are best avoided everywhere apart from the very specific
instances where they are both required and safe. This is why
the deviation process is an essential part of MISRA C: the
point of a guideline is not “You should not do that” but “This
is dangerous: you may only do that if

1) it is needed,
2) it is safe, and
3) a peer can easily and quickly be convinced of both 1)

and 2).”
One useful way to think about MISRA C and the processes
around it is to consider them as an effective way of conducting
a guided peer review to rule out most C language traps and
pitfalls.18

The attitude with respect to incompleteness between the
typical audience of bug finders and the typical audience of
MISRA C is entirely different. Bug finders are usually tolerant
about false negatives and intolerant about false positives:
for instance, by following the development of Clang Static
Analyzer19 it can be seen that everything is done to avoid
false positives with very little regard to avoid false negatives.
This is not the right mindset for checking compliance with
respect to MISRA C: false positives are a nuisance and should
be reduced and/or confined as much a possible, but using
algorithms with false negatives implies that those in charge

18We are indebted to Clayton Weimer for this observation.
19https://clang-analyzer.llvm.org/, last accessed on January 18th, 2019.



of ensuring compliance will have to use other methods. So,
compliance to MISRA C is not bug finding and, of course,
finding some, many or even all causes of run-time errors does
not imply compliance to MISRA C.

C. MISRA C: Readability, Explainability, Code Reviews

Another aspect that places MISRA C in a different camp
from bug finding has to do with the importance MISRA C
assigns to reviews: code reviews, reviews of the code against
design documents, reviews of the latter against requirements.
Note that these are explicitly needed by Directive 3.1 for
which all the code must be formally traceable to the design
documents. More generally, the need for code readability and
explainability is clearly expressed in the rationale of many
MISRA C guidelines.

This fact has some counter intuitive consequences on the
use of static analysis, which is of course crucial both for
bug finding and for the (partial) automation of MISRA C
compliance checking. Consider Rule 9.1, whereby the value
of an automatic object must not be read before it has been set,
since otherwise we have undefined behavior. For bug finding,
the smarter the static analysis algorithm the better. Use of the
same smart algorithm for ensuring compliance with respect
to Rule 9.1 risks obeying the letter of MISRA C but not its
spirit.20 Suppose on the specific program our smart algorithm
ensures Rule 9.1 is never violated: we have thus ruled out
one source of undefined behavior, which is good. However,
the programmer, other programmers, code reviewers, quality
assurance people, one month from now or six months from
now may have to:

1) ensure that the automatic objects that are the subject of
the rule are indeed initialized with the correct value;

2) confirm that the outcome of the tool is indeed correct.
If this takes more than 30 seconds or a minute per object,
this is not good: the smart static analysis algorithm can track
initializations and uses even when they are scattered across,
say, switch cases nested into complex loops; a human cannot.
So, ensuring compliance with respect to Rule 9.1 with deep
semantic analysis is counterproductive to the final goal of the
process of which MISRA C is part. For that purpose it is much
better to use a decidable approximation of Rule 9.1 such as
a suitable generalization of the Definite Assignment algorithm
employed by Java compilers [39, Chapter 16].

VI. SUCCESSFUL ADOPTION OF MISRA C

The highest payoff from the adoption of MISRA C is
achieved when:

1) it is adopted at the very beginning of a project;
2) it is systematically enforced with the help of a high-

quality tool;
3) personnel has been properly trained.
Unfortunately, point 1 is often out of reach, that is, the

project has already started. It must be understood that im-
posing MISRA C on an existing code base with a proven

20There are many ways to do that.

track record may be counterproductive if not done properly.
In general, applying MISRA C to existing code requires sig-
nificant expertise (i.e., more training and/or access to qualified
consulting services) and tools of even higher quality (i.e.,
providing powerful deviation mechanisms, baselining, . . . ).

A. The Importance of Tools

It is entirely possible to manually verify code for compli-
ance to MISRA C but, of course, the cost of doing that is
huge. Hence, tools are highly recommended to semiautomate
the check for compliance. Manual activities remain, such as:

• initial tool configuration;
• tool configuration for deviation.
A good static analysis tool will do a thorough job of auto-

matically verifying compliance for most MISRA C guidelines,
but not all of them:

• undecidable rules;
• directives;
• limitations of the tool (complexity-precision trade-off,

incomplete handling of extensions, . . . );
• issues with the project being analyzed (unavailability

of part of the source code, extensive use of language
extensions, . . . ).

In any case, the remaining manual activities, and peer review,
are greatly facilitated by the level of partial compliance that
can be achieved by using a good tool.

One aspect that should not be underestimated is the proper
configuration of the static analysis tool. Depending on the
tool, this task can be both challenging and error-prone. There
are two main reasons for that: the first one is that C, rather
than a language, is a large family of languages. In C99,
there are 112 implementation-defined behaviors (i.-d.b.). As
each i.-d.b. can be defined in 2 or more ways, there are
more than 2112 ≈ 5 × 1033 possible languages. Actually,
choosing integer and floating-types in the set of bit widths
{8, 16, 32, 64} brings us to more than 1036 possible languages
(dialects of C). Generally speaking, a given compiler can
implement, via options, several such dialects of C. For an
extreme case, GCC/x86 64 implements, via options, hundreds
of such dialects. As a consequence, the tool must adapt to the
particular dialect implemented by that compiler with that set of
options (which may be different for different translation units).
Moreover, changing even one compilation option may change
the language dialect and thus require a change in the tool
configuration. We have seen many projects whose MISRA C
compliance was completely led astray due to misconfiguration
of the actual language dialect implemented by the toolchain in
the static analysis tool. This often occurred because a change
in the build process was not reflected by a corresponding
change in the tool’s configurations.

Another aspect that might require careful configuration of
the tool has to do with predefined macros. Some of these are
influenced by the compiler options, which may be given on the
command line, in environment variables, or in configuration
files. Failing to capture the predefined macros correctly may

www.embedded-world.eu



result, due to conditional compilation preprocessing directives,
into the wrong code being analyzed. Even when the right
code is analyzed, tool misconfiguration has been known to
lead to errors concerning where/how header files are searched,
intrinsics and other extensions, the linker, . . .

There are three possibilities to deal with the complexity of
tool configuration:

1) The tool is integrated in the compiler/linker. At first
sight, this would seem to be the ideal situation, since all
the required information is in the compiler but, generally
speaking:

• such tools are usually not very good (limited audi-
ence, limited investments, limited testing and, most
importantly, the static analysis algorithms used by
compilers for optimization purposes are not ade-
quate for verification;21

• changing the compiler often implies one has to start
from scratch.

2) Manual configuration of the static analysis tool:
• this might be very error-prone;
• any change to the compiler options must be matched

by a corresponding manual change to the configu-
ration.

3) The tool is designed in such a way so as to automatically
extract the required information from the toolchain.

B. The Importance of Training

Staff competence is a crucial requirement in order to carry
out the activities that allow describing a project as “MISRA
Compliant” [28]. Without a proper understanding of C pitfalls
and of the reasons behind each of the MISRA guidelines,
developers often:

• perceive the adoption of the guidelines as a useless
burden;

• misunderstand messages output by the tool and do not
know what should be done;

• are unable to recognize false positives;
• change the code by trial-and-error in an attempt to silence

the tools.
Lack of training always implies significant time loss. More-
over, without adequate training, more often than one might
think, after code changes to force MISRA C compliance there
is a strict decrease in the quality of the code produced. In
contrast, in our experience, proper formal training of personnel
involved in the development and quality assessment, enables
a smooth and successful adoption of MISRA C into an
organization. This kind of training significantly strengthens
the skills and competences of teams involved in the design,
development and verification of critical embedded software
systems written in C.

VII. CONCLUSION

In this paper, having explained some of the advantages
and disadvantages of using the C language for embedded

21See https://tinyurl.com/y998etdf .

systems and how the uncontrolled use of C conflicts with
both safety and security requirements, we described the back-
ground, motivation and history of the MISRA project. We have
explained how the MISRA C guidelines define a standardized
structured subset of the C language, making it easier, for code
that follows these guidelines (possibly with well-documented
deviations), to verify that important and necessary safety and
security properties hold.

We have looked at the different kinds of the MISRA C
guidelines, distinguishing between those that can be automati-
cally verified from the code syntax, those that need information
beyond that contained in the source code, and those for which
the question as to whether the code is compliant is algorith-
mically undecidable. We have presented a small selection of
MISRA C guidelines along with a terse explanation of their
rationale.

We have highlighted some points that often cause misun-
derstandings of the key role MISRA C plays in the devel-
opment of safety- and security-critical embedded software.
Particularly, the fundamental differences between so-called
bug finding and the application of MISRA C in the context
of the error prevention strategy it is part of. Finally, we have
illustrated some important points for the successful adoption
of MISRA C in an organization, that is, the necessity of high-
quality automatic tools for the checking or partial checking of
compliance, and the essential role of proper formal training.

Acknowledgments
For the notes on the history of MISRA and MISRA C we are

indebted to Andrew Banks (LDRA, current Chairman of the
MISRA C Working Group) and David Ward (HORIBA MIRA,
current Chairman of the MISRA Project). We are grateful
to the following people who provided useful comments and
advice: Fulvio Baccaglini (PRQA — a Perforce Company,
MISRA C Working Group), Dave Banham (Rolls-Royce plc,
MISRA C Working Group), Daniel Kästner (AbsInt, MISRA
C Working Group), Thomas Schunior Plum (Plum Hall,
WG14), Chris Tapp (LDRA, Keylevel Consultants, MISRA C
Working Group, current Chairman of the MISRA C++ Working
Group), David Ward (ditto). We are also grateful to the
following BUGSENG collaborators: Paolo Bolzoni, for some
example ideas; Anna Camerini for the composition of Figure 1.

REFERENCES

[1] D. M. Ritchie, “The development of the C language,” SIGPLAN Notices,
vol. 28, no. 3, pp. 201–208, Mar. 1993.

[2] Embedded Systems Safety & Security Survey, Barr Group, Germantown,
MD, USA, Feb. 2018, available at http://www.barrgroup.com/.

[3] 2011 Embedded Engineer Survey, VDC Research, Natick, MA, USA,
Aug. 2011.

[4] V. Nélis, P. M. Yomsi, and L. M. Pinho, “The variability of application
execution times on a multi-core platform,” in Proceedings of the 16th
International Workshop on Worst-Case Execution Time Analysis (WCET
2016), ser. OASICS, M. Schoeberl, Ed., vol. 55. Toulouse, France:
Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2016, pp. 6:1–
6:11.

[5] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in Proceedings of the Ninth European Dependable
Computing Conference (EDCC 2012), C. Constantinescu and M. P.
Correia, Eds. Sibiu, Romania: IEEE Computer Society, 2012, pp. 132–
143.



[6] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive WCET analysis leverag-
ing runtime resource capacity enforcement,” in Proceedings of the 26th
Euromicro Conference on Real-Time Systems (ECRTS 2014). Madrid,
Spain: IEEE Computer Society, 2014, pp. 109–118.

[7] ISO/IEC, ISO/IEC 9899:1990: Programming Languages — C. Geneva,
Switzerland: ISO/IEC, 1990.

[8] ——, ISO/IEC 9899:1990/AMD 1:1995: Programming Languages — C.
Geneva, Switzerland: ISO/IEC, 1995.

[9] ——, ISO/IEC 9899:1999: Programming Languages — C. Geneva,
Switzerland: ISO/IEC, 1999.

[10] ——, ISO/IEC 9899:1999/Cor 3:2007: Programming Languages — C,
Technical Corrigendum 3 ed. Geneva, Switzerland: ISO/IEC, 2007.

[11] ——, ISO/IEC 9899:2011: Programming Languages — C. Geneva,
Switzerland: ISO/IEC, 2011.

[12] ——, ISO/IEC 9899:2018: Programming Languages — C. Geneva,
Switzerland: ISO/IEC, 2018.

[13] T. Winters, “C++ stability, velocity, and deployment plans [R2],”
ISO/IEC JTC1/SC22/WG21, Doc. no. P0684R2, Feb. 2018, available at
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0684r2.pdf.

[14] MISRA, MISRA C:2012 — Guidelines for the use of the C language in
critical systems. Nuneaton, Warwickshire CV10 0TU, UK: MIRA Ltd,
Mar. 2013.

[15] Intel 64 and IA-32 Architectures Software Developer’s Manual —
Volume 2 (2A, 2B, 2C & 2D): Instruction Set Reference, A-Z, Intel
Corporation, 2018.

[16] L. Hatton, Safer C: Developing Software for High-Integrity and Safety-
Critical Systems. New York, NY, USA: McGraw-Hill, Inc., 1995.

[17] General Principles of Software Validation; Final Guidance for In-
dustry and FDA Staff, Version 2.0 ed., U.S. Department Of Health
and Human Services; Food and Drug Administration; Center for De-
vices and Radiological Health; Center for Biologics Evaluation and
Research, Jan. 2002, available at http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm085281.htm.

[18] The Motor Industry Research Association, Development Guidelines For
Vehicle Based Software. Nuneaton, Warwickshire CV10 0TU, UK: The
Motor Industry Research Association, Nov. 1994.

[19] ISO, ISO 26262:2011: Road Vehicles — Functional Safety. Geneva,
Switzerland: ISO, Nov. 2011.

[20] Motor Industry Software Reliability Association, MISRA-C:1998 —
Guidelines for the use of the C language in vehicle based sofware.
Nuneaton, Warwickshire CV10 0TU, UK: MIRA Ltd, Jul. 1998.

[21] Motor Industry Software Reliability Association, MISRA-C:2004 —
Guidelines for the use of the C language in critical systems. Nuneaton,
Warwickshire CV10 0TU, UK: MIRA Ltd, Oct. 2004.

[22] Motor Industry Software Reliability Association, MISRA C++:2008
— Guidelines for the use of the C++ language in critical systems.
Nuneaton, Warwickshire CV10 0TU, UK: MIRA Ltd, Jun. 2008.

[23] VV. AA., “JSF Air vehicle C++ coding standards for the system de-
velopment and demonstration program,” Lockheed Martin Corporation,
Document 2RDU00001, Rev C, Dec. 2005.

[24] VV. AA., “JPL institutional coding standard for the C programming
language,” Jet Propulsion Laboratory, California Institute of Technology,
Tech. Rep. JPL DOCID D-60411, Mar. 2009.

[25] M. Barr, Embedded C Coding Standard. Germantown, MD, USA: Barr
Group, 2013.

[26] CERT, SEI CERT C Coding Standard: Rules for Developing Safe,
Reliable, and Secure Systems, 2016th ed. Software Engineering,
Carnegie Mellon University, 2016.

[27] Software Engineering Center, Embedded System Development Coding
Reference: C Language Edition. Information-Technology Promotion
Agency, Japan, Jul. 2014, version 2.0.

[28] MISRA, MISRA Compliance:2016 — Achieving compliance with MISRA
Coding Guidelines. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA
MIRA Ltd, Apr. 2016.

[29] R. Bagnara, A. Bagnara, and P. M. Hill, “The MISRA C coding standard
and its role in the development and analysis of safety- and security-
critical embedded software,” in Static Analysis: Proceedings of the 25th
International Symposium (SAS 2018), ser. Lecture Notes in Computer
Science, A. Podelski, Ed., vol. 11002. Freiburg, Germany: Springer
International Publishing, 2018, pp. 5–23.

[30] MISRA, MISRA C:2012 Amendment 1 — Additional security guidelines
for MISRA C:2012. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA
MIRA Ltd, Apr. 2016.

[31] ISO/IEC, ISO/IEC TS 17961:2013, Information technology — Program-
ming languages, their environments & system software interfaces — C
Secure Coding Rules. Geneva, Switzerland: ISO/IEC, Nov. 2013.

[32] ——, ISO/IEC TS 17961:2016, Information technology — Programming
languages, their environments & system software interfaces — C Secure
Coding Rules. Geneva, Switzerland: ISO/IEC, Aug. 2016.

[33] MISRA, MISRA C:2012 Addendum 2 — Coverage of MISRA C:2012
(including Amendment 1) against ISO/IEC TS 17961:2013 “C Secure”,
2nd ed. Nuneaton, Warwickshire CV10 0TU, UK: HORIBA MIRA
Ltd, Jan. 2018.

[34] ——, MISRA C:2012 Addendum 3 — Coverage of MISRA C:2012
(including Amendment 1) against CERT C 2016 Edition. Nuneaton,
Warwickshire CV10 0TU, UK: HORIBA MIRA Ltd, Jan. 2018.

[35] R. Bagnara, “MISRA C, for security’s sake!” in Informal proceedings
of the 14th Workshop on Automotive Software & Systems, G. Lami,
Ed., Milan, Italy, 2016, available at http://www.automotive-spin.it/. Also
published as Report arXiv:1705.03517 [cs.SE], available at
http://arxiv.org/.

[36] MISRA, MISRA C:2012 Technical Corrigendum 1 — Technical clarifi-
cation of MISRA C:2012. Nuneaton, Warwickshire CV10 0TU, UK:
HORIBA MIRA Ltd, Jun. 2017.

[37] A. Banks, “MISRA C — recent developments and a road map to
the future,” Presentation slides available at http://www.his-2018.co.uk/
session/misra-c-updates-2016, Nov. 2016, presented at the High In-
tegrity Software Conference 2016, Bristol, UK, November 1, 2016.

[38] H. Kuder, “HIS source code metrics,” Herstellerinitiative Software, Tech.
Rep. HIS-SC-Metriken.1.3.1-e, Apr. 2008, version 1.3.1.

[39] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley, The Java
Language Specification: Java SE 8 Edition, 5th ed., ser. Java Series.
Upper Saddle River, NJ, USA: Addison-Wesley, 2014.

www.embedded-world.eu


