
MISRA C,
for Security’s Sake!†

Roberto Bagnara, BUGSENG∗and University of Parma§ member‡ of MISRA C Working Group,
member‡ of ISO/IEC JTC1/SC22/WG14 - C Standardization Working Group

Athird of United States new cellular subscriptions
in Q1 2016 were for cars. There are now more
than 112 million vehicles connected around the

world. The percentage of new cars shipped with Internet
connectivity is expected to rise from 13% in 2015 to
75% in 2020, and 98% of all vehicles are likely to be
connected by 2025. Moreover, the news is often reporting
about “white hat” hackers intruding on car software. For
these reasons, security concerns in automotive and other
industries have skyrocketed. We briefly illustrate the
relationship between the ISO/IEC C language standards,
the CERT C coding standards, ISO/IEC TS 17961 (“C
Secure Coding Rules”), and MISRA C, with a focus on
the objective of preventing security vulnerabilities (and of
course safety hazards), as opposed to trying to eradicate
them once they have been inserted in the code. We then
introduce two new MISRA documents, MISRA C:2012
Addendum 2 and MISRA C:2012 Amendment 1, which
clarify and complete the coverage offered by MISRA
C:2012 against TS 17961. These new developments
ensure that MISRA C, which is widely respected as a
safety-related coding standard, is equally applicable as a
security-related coding standard.

†Presented at the 14th Workshop on Automotive Software &
Systems, Milan, November 10, 2016.

∗roberto.bagnara@bugseng.com
§bagnara@cs.unipr.it
‡Writing and speaking in a personal capacity.

Joy and Pain of Connected Cars

Once upon a time, embedded systems were isolated
systems. This is no longer the case, at least in the
automotive industry. In the first quarter of 2016,
connected cars accounted for around a third of all
new cellular subscriptions, more than phones, more
than tablets.1 The percentage of new cars shipped
with Internet connectivity is expected to increase
rapidly, from 13% in 2015 to 75% in 2020 to 100%
in 2025, when 98% of all vehicles will likely be con-
nected. What happens to connected computers is
well known and, according to the Common Vulnera-
bilities and Exposures (CVE) database, the situation
is not improving despite the much increased aware-
ness of security issues. For instance, denial of service
vulnerabilities listed in the CVE have been increasing
from 1999 up to and including 2016. The fear that
car owners worldwide might become the target of
various kinds of criminals is concrete. With the num-
ber of victims of ransomware running to hundreds of
thousands and the consequent global losses likely to
reach hundreds of millions of euros, it is conceivable
that locking up cars until the owners pay might be
seen as a profitable thing to do.

“For well-organized attackers, this may end
up being a numbers game, which may be
similar to credit-card theft and sale.”

(Tony Lee, FireEye)
1http://chetansharma.com/usmarketupdateq12016.htm

Page 1 of 4



Safety and Security

The fact that the English words safety and security
correspond to the same word in many languages is not
helping to clarify the distinction between the two con-
cepts. Commonly used taxonomies define Safety =
Integrity+Absence of catastrophic consequences and
Security = Confidentiality + Integrity + Availability,
where Integrity can be described as the absence of
improper (i.e., out-of-spec) system alterations un-
der normal and exceptional conditions [1]. The only
thing that distinguishes the role of integrity in safety
and security is the notion of exceptional condition.
This reflects the fact that exceptional conditions are
perceived as accidental (safety hazards) or intentional
(security threats) [3].

While safety and security are distinct concepts,
when it comes to connected software not having one
implies not having the other. To start with, both
safety and security issues are due to software defects:
some are introduced in requirements, some in design,
some in coding. It is well known that many software
defects that have an impact on safety, e.g., buffer
overflows, can be exploited to attack a system if
exposed to the outside world: we can summarize that
by Unsafe + Connected =⇒ Insecure. On the other
hand, the recent successful attempts of Charlie Miller
and Chris Valasek at impacting safety functions of
the Jeep Cherokee show that Insecure =⇒ Unsafe.

“They want to drive trucks into civilians,
and it’s not too much to think they can
hack a car and do the same thing.”

(John Carlin, U.S. Dept. of Justice)

C, CERT C, TS 17961, and MISRA C

ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standard-
ization Working Group, has always been faithful to
the original spirit of the language [10]. With some
little humor, this can be captured in the form of
“commandments” like the following:

I Trust the programmer

II Let the programmer do anything

III Keep it fast, even if not portable

IV Keep it small and simple

Of course, some of these conflict with both safety and
security requirements. All that is well known, as is
well known that, for safety-related applications, lan-
guage subsetting is crucial. The most authoritative

language subset for the C programming language is
MISRA C, now at its third edition [5], MISRA C:2012
or MC3 for short.

One of the unfounded myths about MISRA C is
that it is only about safety. In reality, in its opening
paragraph MISRA C presents itself as “a subset of
the C language [that] can also be used to develop
any application with high integrity or high reliability
requirements.” Because of this misunderstanding,
when awareness of security threats increased, people
started looking elsewhere for a security-related C cod-
ing standard, and they found The CERT C (Secure)
Coding Standard, whose first edition was published
in 2008 [8] and second edition in 2014 [9]. Both edi-
tions were authored by Robert C. Seacord when he
was employed by the CERT Division of the Software
Engineering Institute at CMU; Addison-Wesley owns
the copyright [10].

Despite its popularity, CERT C has several short-
comings from an industrial point of view: it is the
product of essentially one person (although a very
expert and talented one, who, however, has now left
the project); its development continues on a shared
wiki that changes overnight;2 it is not based on the
idea of language subsetting, hence, differently from
MISRA C, it leans on the cure side rather than the
prevention side; many rules are formulated in a way
that is not directly amenable to automatic, static
analysis.

While working at what has become the C11 edition
of the ISO/IEC C language standard, WG14 —which,
starting from 2006, encouraged the development of
CERT C— established, in 2009, a study group whose
objective was to produce statically analyzable secure
coding guidelines for the C language. The result of
this effort has been the publication of the ISO/IEC
TS 17961:2013 technical specification [4], TS 17961
in the sequel.

“An essential element of secure coding in
the C programming language is a set of well-
documented and enforceable coding rules.
The rules specified in this Technical Speci-
fication apply to analyzers, including static
analysis tools and C language compiler ven-
dors that wish to diagnose insecure code
beyond the requirements of the language
standard. All rules are meant to be enforce-
able by static analysis.”

(TS 17961, Introduction)
2A new “snapshot version” has been published in PDF form

on June 30, 2016 [2].

Page 2 of 4



MC3 for Safety and Security

As we saw, until and including the first quarter of
2016, the situation was the following: on the one
hand, we had MISRA C:2012, which was and is
widely respected as a safety-related coding standard
(even though its prescriptions go beyond safety and
are targeted at all high integrity and high reliability
systems); on the other hand, we had TS 17961, a
security-related coding standard backed by ISO. Even
though, as mentioned, the software defects that can
give rise to safety hazards and security threats have a
significant intersection, MISRA C:2012 and TS 17961,
as they were published in 2013, are not a substitute
for one another.

Now, since the first quarter of 2016, things have
changed. The MISRA C Working group has pub-
lished two documents: the first is MISRA C:2012
Addendum 2 [6], which contains a coverage matrix
of MISRA C:2012 against TS 17961. The second
document, MISRA C:2012 Amendment 1, contains
14 additional guidelines, 1 directive and 13 rules, tar-
geted at the prevention of security issues [7].3 These
concern, with ‘D’ standing for directive and ‘M’/‘R’
standing for mandatory/required rule, respectively:

1 D validation of external data;

1 M use of sizeof() on a function parameter of
array type;

1 M <ctype.h> functions;

3 R <stdlib.h> memory comparison functions;

2 M <stdlib.h> environment functions;

2 M <string.h> string-handling functions;

1 R <stdio.h> I/O functions and handling of EOF;

3 R <error.h> handling of errno.

The coverage of MISRA C:2012, without (MC3) and
with Amendment 1 (MC3 + MC3A1) is shown in
Table 1. The coverage kind column has to be inter-
preted as follows [6]:

Explicit The behaviour addressed by the TS 17961
rule is explicitly covered by one or more MISRA
C:2012 guidelines, which directly addresses the
undesired behaviour.

Implicit The behaviour addressed by the TS 17961
rule is implicitly covered by one or more MISRA
C:2012 guidelines, although the behaviour is not
explicitly referenced.

3Both documents are available at http://misra.org.uk/ .

Table 1: MISRA C:2012 coverage of TS 17961

Coverage kind MC3 MC3 + MC3A1

Full, explicit 22 35
Full, implicit 7 3
Full, restrictive 11 8
Partial, broad 2 0
None 4 0

Total 46 46

Table 2: MC3+MC3A1 coverage of CERT C

Coverage kind CERT C:2014 CERT C:2016

C11 specific 13 14
Full, explicit 41 42
Full, implicit 17 17
Full, restrictive 22 21
None 5 5

Total 98 99

Restrictive The behaviour addressed by the TS 17961
rule is covered by one or more MISRA C:2012
guidelines that prohibit a language feature in a
restrictive manner. For example:
Rule 21.3 stdlib.h: memory alloc./dealloc.;
Rule 21.5 signal.h: all;
Rule 21.6 stdio.h: input/output functions;
Rule 21.8 stdlib.h: getenv().

Broad Some aspects of the behaviour addressed by
the TS 17961 rule are covered in a restrictive
manner; some other aspects of the behaviour are
not covered by any MISRA C:2012 guidelines.

None The behaviour addressed by the TS 17961 rule
is not covered by any MISRA C guidelines.

Table 1 shows that, while coverage for freestanding
applications was already very good before the issue
of MISRA C:2012 Amendment 1, now coverage can
be considered complete.

It is also interesting to see how MISRA C:2012
integrated with Amendment 1 covers CERT C. The
MISRA C working group is currently working on
the production of a document containing a proper
compliance matrix. Preliminary, unofficial data can
be seen in Table 2, both for the latest book edition,
CERT C:2014 [9], and the PDF snapshot released
on June 30, 2016 [2] (in which two rules have been
added and one has been deleted).

Page 3 of 4



There are other reasons why MISRA C:2012 with
Amendment 1 is the best available coding standard
for the development of critical embedded systems.
One of them is the emphasis its guidelines put on
readability: it is well known that code review com-
bined with static analysis and the automatic en-
forcement of sound coding guidelines by means of
high-quality tools is, by far, the most effective de-
fect removal strategy. This is even more so when
security concerns regarding, e.g., confidentiality or
privilege escalation: while progress is being made
on formal methods that are able to address them,
careful code review is crucial both for today and for
the foreseeable future.

“In practice, then, security-critical and
safety-critical code have the same require-
ments.” (TS 17961, Introduction)

Conclusion

Connected cars are with us and in less than a decade
they will be everywhere. Given the amount of soft-
ware that equips them and the criticality of the
functions controlled by it, connectivity opens the
door to malicious activities of all kinds. This comes
at a time when a redefinition of the concept of lia-
bility for producers of embedded software is taking
place (cf. the Toyota unintended acceleration case).
When it comes to security, additional issues arise.
For instance, in order to demand a ransom, it is
not even necessary to lock up or compromise safety
of the vehicle: it is enough to, e.g., display on the
dashboard something that makes the owner suspect
safety might have been impacted by hackers. As
another example, the security risk posed by disgrun-
tled/unfaithful developers will likely affect the way
software is produced and verified. The automotive
industry, which already was the most critical sector
for software safety, is also becoming to play the same
role in regard to software security.

In this short essay, we recalled what makes safety
and security different and what is common to them.
We then reviewed the genesis of the CERT C coding
standards and ISO/IEC TS 17961 “C Secure Cod-
ing Rules”, and their relationship with the ISO/IEC
C language standard. We discussed recent develop-
ments of the MISRA C:2012 coding guidelines, which
complete the coverage of TS 17961. We argue that,
with this integration, MISRA C:2012 is the C coding
standard of choice for the automotive industry and
for all industries developing embedded systems that
are safety-critical and/or security-critical.

“Car companies are finally realising that
what they sell is just a big computer you
sit in.” (Kevin Tighe, Bugcrowd)

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans-
actions on Dependable and Secure Computing,
1(1):11–33, 2004.

[2] CERT. SEI CERT C Coding Standard: Rules
for Developing Safe, Reliable, and Secure Sys-
tems. Software Engineering Institute, Carnegie
Mellon University, 2016 edition, 2016.

[3] K. M. Goertzel and L. Feldman. Software sur-
vivability: Where safety and security converge.
In AIAA Infotech@Aerospace Conference 2009,
Seattle, Washington, 2009. American Institute
of Aeronautics and Astronautics.

[4] ISO/IEC. ISO/IEC TS 17961:2013, Informa-
tion technology — Programming languages, their
environments & system software interfaces — C
Secure Coding Rules. ISO/IEC, Geneva, Switzer-
land, November 2013.

[5] MISRA. MISRA-C:2012 — Guidelines for the
use of the C language in critical systems. MIRA
Limited, Nuneaton, Warwickshire, UK, March
2013.

[6] MISRA. MISRA C:2012 Addendum 2 — Cov-
erage of MISRA C:2012 against ISO/IEC TS
17961:2013 “C Secure”. HORIBA MIRA Lim-
ited, Nuneaton, Warwickshire, UK, April 2016.

[7] MISRA. MISRA C:2012 Amendment 1 — Ad-
ditional security guidelines for MISRA C:2012.
HORIBA MIRA Limited, Nuneaton, Warwick-
shire, UK, April 2016.

[8] R. C. Seacord. The CERT C Secure Coding
Standard. Addison-Wesley, 2008.

[9] R. C. Seacord. The CERT C Coding Standard:
98 Rules for Developing Safe, Reliable, and Se-
cure Systems. Addison-Wesley, second edition,
2014.

[10] R. C. Seacord. Safety and security coding stan-
dards for C. Engineering & Technology Refer-
ence, 2016. DOI: 10.1049/etr.2016.0024.

Page 4 of 4


