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Abstract. The MISRA project started in 1990 with the mission of pro-
viding world-leading best practice guidelines for the safe and secure ap-
plication of both embedded control systems and standalone software.
MISRA C is a coding standard defining a subset of the C language, ini-
tially targeted at the automotive sector, but now adopted across all in-
dustry sectors that develop C software in safety- and/or security-critical
contexts. In this paper, we introduce MISRA C, its role in the develop-
ment of critical software, especially in embedded systems, its relevance
to industry safety standards, as well as the challenges of working with a
general-purpose programming language standard that is written in nat-
ural language with a slow evolution over the last 40+ years. We also
outline the role of static analysis in the automatic checking of compli-
ance with respect to MISRA C, and the role of the MISRA C language
subset in enabling a wider application of formal methods to industrial
software written in C.

1 Introduction

In September 1994, the “First International Static Analysis Symposium” took
place in Namur, Belgium [22]. The Call for Papers contained the following:

Static Analysis is increasingly recognized as a fundamental tool for high
performance implementations and verification systems of high-level pro-
gramming languages. The last two decades have witnessed substantial
developments in this area, ranging from the theoretical frameworks to
the design and implementation of analysers and their applications in
optimizing compilers.

? While Roberto Bagnara is a member of the MISRA C Working Group and of
ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group, the
views expressed in this paper are his and his coauthors’ and should not be taken to
represent the views of either working group.



In November 1994, MISRA3 published its “Development Guidelines For Ve-
hicle Based Software” [40]. These listed static analysis as the first automatic
methodology to verify software and contained the following paragraphs:

3.5.1.5 Consideration should be given to using a restricted subset of a
programming language to aid clarity, assist verification and facilitate
static analysis where appropriate.

3.5.2.6 Static analysis is effective in demonstrating that a program is
well structured with respect to its control, data and information
flow. It can also assist in assessing its functional consistency with its
specification.

Paragraph 3.5.1.5 led to the definition of the subset of the C programming
language that will later be called MISRA C.

While the quoted texts show the passage of time (today we would express
things differently), they witness the fact that static analysis was recognized as an
established research field at about the same time that it gathered enough indus-
trial recognition to be explicitly recommended by an influential set of guidelines
for the automotive industry, one of the most important economic sectors by rev-
enue. The connection between static analysis research and the industrial world
—which now encompasses all industry sectors— that recognizes MISRA C as
the basis for the development of safe and secure applications in C has been ba-
sically unidirectional and mediated by the tool providers. These tool providers
are interested in all advances in static analysis research in order to improve the
applicability and usefulness of their tools and hence simplify the task of verifying
compliance with respect to the MISRA C guidelines. It must be admitted that
the static analysis research community has seen the (very pragmatic) industry
movement behind MISRA C with a somewhat snobbish and often not well in-
formed attitude.4 For instance, [7, Section 3] suggests that MISRA C concerns
coding style and that semantic-based static analysis is not needed to check its
guidelines. In reality, while MISRA C encourages the adoption of a consistent
programming style, it has always left this matter to individual organizations: “In
addition to adopting the subset, an organisation should also have an in-house
style guide. [. . . ] However the enforcement of the style guide is outside the scope
of this document” [24, Section 4.2.2] (see also [25, Section 5.2.2]). Moreover, as
we will see, semantic-based static analysis is required to check many MISRA C
guidelines without constraining too much the way the code is written.

In this paper we try to clear up such misconceptions and to properly intro-
duce MISRA C to the static analysis community. Our ultimate aim is to foster
collaboration between the communities, one which we believe could be very fruit-
ful: the wide adoption of MISRA C in industry constitutes an avenue for a wider
introduction of formal methods and a good opportunity to channel some applied
static analysis research to the most important subset of the C programming
language.

3 Originally, an acronym for Motor Industry Software Reliability Association.
4 The authors of this paper are not an exception to this statement, at least not until

2010.
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The plan of the paper is the following: Section 2 introduces the C language
explaining why it is so widely adopted, why it is (not completely) defined as it
is, why it is not going to change substantially any time soon, and why subsetting
it is required; Section 3 introduces the MISRA project and MISRA C focusing
on its last edition, MISRA C:2012, with its amendments and addenda; Section 4
highlights the links between MISRA C and static analysis; Section 5 discusses
some trends and opportunities; Section 6 concludes.

2 The C Language

The development of the C programming language started in 1969 at Bell Labs,
almost 50 years ago, and the language was used for the development of the Unix
operating system [37]. Despite frequent criticism, C is still one of the most used
programming languages overall5 and the most used one for the development of
embedded systems [4, 42]. There are several reasons why C has been and is so
successful:

– C compilers exist for almost any processor, from tiny DSPs used in hearing
aids to supercomputers.

– C compiled code can be very efficient and without hidden costs, i.e., pro-
grammers can roughly predict running times even before testing and before
using tools for worst-case execution time approximation.6

– C allows writing compact code: it is characterized by the availability of many
built-in operators, limited verbosity, . . .

– C is defined by international standards: it was first standardized in 1989 by
the American National Standards Institute (this version of the language is
known as ANSI C) and then by the International Organization for Standard-
ization (ISO) [14–18].

– C, possibly with extensions, allows easy access to the hardware and this is
a must for the development of embedded software.

– C has a long history of usage in all kinds of systems including safety-,
security-, mission- and business-critical systems.

– C is widely supported by all sorts of tools.

Claims that C would eventually be superseded by C++ do not seem very plausi-
ble, at least as far as the embedded software industry is concerned. In addition to
the already-stated motives, there is language size and stability: C++ has become
a huge, very complex language; moreover it is evolving at a pace that is in sharp
contrast with industrial best practices. The trend whereby C++ rapid evolution
clashes with the industry requirements for stability and backward compatibility

5 Source: TIOBE Index for June 2018, see https://www.tiobe.com/tiobe-index/.
6 This is still true for implementations running on simple processors, with a limited

degree of caching and internal parallelism. Prediction of maximum running time
without tools becomes outright impossible for current multi-core designs such as
Kalray MPPA, Freescale P4080, or ARM Cortex-A57 equivalents (see, e.g., [32–34]).
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has been put black-on-white at a recent WG21 meeting,7 where the following
statement was agreed upon [46]: “The Committee should be willing to consider
the design / quality of proposals even if they may cause a change in behavior or
failure to compile for existing code.”

A good portion of the criticism of C comes from the notion of behavior,
defined as external appearance or action [17, Par. 3.4] and the so-called as-if
rule, whereby the compiler is allowed to do any transformation that ensures that
the “observable behavior” of the program is the one described by the standard
[17, Par 5.1.2.3#5].8 While all compiled languages have a sort of as-if rule that
allows optimized compilation, one peculiarity of C is that it is not fully defined.
There are four classes of not fully defined behaviors (in the sequel, collectively
referred to as “non-definite behaviors”):

implementation-defined behavior: unspecified behavior where each imple-
mentation documents how the choice is made [17, Par. 3.4.1]; e.g., the sizes
and precise representations of the standard integer types;

locale-specific behavior: behavior that depends on local conventions of na-
tionality, culture, and language that each implementation documents [17,
Par. 3.4.2]; e.g., character sets and how characters are displayed;

undefined behavior: behavior, upon use of a non-portable or erroneous pro-
gram construct or of erroneous data, for which this International Standard
imposes no requirements [17, Par. 3.4.3]; e.g., attempting to write a string
literal constant or shifting an expression by a negative number or by an
amount greater than or equal to the width of the promoted expression;

unspecified behavior: use of an unspecified value, or other behavior where
this International Standard provides two or more possibilities and imposes
no further requirements on which is chosen in any instance [17, Par. 3.4.4];
e.g., the order in which sub-expressions are evaluated.

Setting aside locale-specific behavior, whose aim is to avoid some nontechni-
cal obstacles to adoption, it is important to understand the connection between
non-definite behavior and the relative ease with which optimizing compilers can
be written. In particular, C data types and operations can be directly mapped to
data types and operations of the target machine. This is the reason why the sizes
and precise representations of the standard integer types are implementation-
defined: the implementation will define them in the most efficient way depending
on properties of the target CPU registers, ALUs and memory hierarchy. Attempt-
ing to write on string literal constants is undefined behavior because they may
reside in read-only memory and/or may be merged and shared: for example,

7 WG21 is a common shorthand for ISO/IEC JTC1/SC22/WG21, a.k.a. the C++

Standardization Working Group. The cited meeting took place in Jacksonville, FL,
USA, March 12–17, 2018.

8 In this paper, we refer to the C99 language standard [16] because this is the most
recent version of the language that is targeted by the current version of MISRA C
[25]. All what is said about the C language itself applies equally, with only minor
variations, to all the published versions of the C standard.
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a program containing "String" and "OtherString" may only store the latter
and use a suffix of that representation to represent the former. The reason why
shifting an expression by a negative number or by an amount greater than or
equal to the width of the promoted expression is undefined behavior is less obvi-
ous. What sensible semantics can be assigned to shifting by a negative number
of bit positions? Shifting in the opposite direction is a possible answer, but this
is usually not supported in hardware, so it would require a test, a jump and a
negation. It is a bit more subtle to understand why the following is undefined
behavior:

� �
uint32_t i = 1;

i = i << 32; /* Undefined behavior. */
� �
One would think that pushing 32 or more zeroes to the right of i would give
zero. However, this does not correspond to how some architectures implement
shift instructions. IA-32, for instance [12, section on “IA-32 Architecture Com-
patibility”]:

The 8086 does not mask the shift count. However, all other IA-32 pro-
cessors (starting with the Intel 286 processor) do mask the shift count
to 5 bits, resulting in a maximum count of 31. This masking is done
in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

This means that, on all IA-32 processors starting with the Intel 286, a direct
mapping of C’s right shift to the corresponding machine instruction will give:

� �
i = i << 32; /* This is equivalent to... */

i = i << (32 & 0x1F); /* ... this , i.e., ... */

i = i << 0; /* this , which is a no-op. */
� �
So also for this case, for speed and ease of implementation, C leaves the behavior
undefined.

The recurring request to WG149 to “fix the language” is off the mark. In
fact, weakness of the C language comes from its strength:

– Non-definite behavior is the consequence of two factors:
1. the ease of writing efficient compilers for almost any architecture;
2. the existence of many compilers by different vendors and the fact that

the language is standardized.
Concerning the second point, it should be considered that, in general, ISO
standardizes existing practice taking into account the opinions of the vendors

9 Short for ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group.
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that participate in the standardization process, and with great attention
to backward compatibility: so, when diverging implementations exist, non-
definite behavior might be the only way forward.

– The objective of easily obtaining efficient code with no hidden costs is the
reason why, in C, there is no run-time error checking.

– Easy access to the hardware entails the facility with which the program state
can be corrupted.

– Code compactness is one of the reasons why the language can easily be
misunderstood and misused.

Summarizing, the C language can be expected to remain faithful to its orig-
inal spirit and to be around for the foreseeable future, at least for the devel-
opment of embedded systems. However, it is true that several features of C do
conflict with both safety and security requirements. For this reason, language
subsetting is crucial for critical applications. This was recognized early in [11]
and is now mandated or recommended by all safety- and security-related indus-
trial standards, such as IEC 61508 (industrial), ISO 26262 (automotive), CEN-
ELEC EN 50128 (railways), RTCA DO-178B/C (aerospace) and FDA’s General
Principles of Software Validation [41]. Today, the most authoritative language
subset for the C programming language is MISRA C, which is the subject of the
next section.

3 MISRA C

The MISRA project started in 1990 with the mission of providing world-leading
best practice guidelines for the safe and secure application of both embedded
control systems and standalone software. The original project was part of the
UK Government’s “SafeIT” programme but it later became self-supporting, with
MIRA Ltd, now HORIBA MIRA Ltd, providing the project management sup-
port. Among the activities of MISRA is the development of guidance in specific
technical areas, such as the C and C++ programming languages, model-based
development and automatic code generation, software readiness for production,
safety analysis, safety cases and so on. In November 1994, MISRA published its
“Development guidelines for vehicle based software”, a.k.a. “The MISRA Guide-
lines” [40]: this is the first automotive publication concerning functional safety,
more than 10 years before work started on ISO 26262 [13].

The MISRA guidelines [40] prescribed the use of “a restricted subset of a
standardized structured language.” In response to that, the MISRA consortium
began work on the MISRA C guidelines: at that time Ford and Land Rover were
independently developing in-house rules for vehicle-based C software and it was
recognized that a common activity would be more beneficial to industry. The
first version of the MISRA C guidelines was published in 1998 [23] and received
significant industrial attention.

In 2004, following the many comments received from its users —many of
which, beyond expectation, were in non-automotive industries— MISRA pub-
lished an improved version of the C guidelines [24]. In MISRA C:2004 the in-
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tended audience explicitly became constituted by all industries that develop
C software for use in high-integrity/critical systems. Due to the success of
MISRA C and the fact that C++ is also used in critical contexts, in 2008 MISRA
published a similar set of MISRA C++ guidelines [31].
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Fig. 1. Origin and history of MISRA C

Both MISRA C:1998 and MISRA C:2004 target the 1990 version of the C
Standard [14]. In 2013, the revised set of guidelines known as MISRA C:2012 was
published [25]. In this version there is support both for C99 [16] as well as C90
(in its amended and corrected form sometimes referred to as C95 [15]). With
respect to previous versions, MISRA C:2012 covers more language issues and
provides a more precise specification of the guidelines with improved rationales
and examples. Figure 1 shows part of the relationship and influence between
the MISRA C/C++ guidelines and other sets of guidelines. It can be seen that
MISRA C:1998 influenced Lockheed’s “JSF Air Vehicle C++ Coding Standards
for the System Development and Demonstration Program” [43], which influenced
MISRA C++:2008, which, in turn, influenced MISRA C:2012. The activity that
led to MISRA C++:2008 was also encouraged by the UK Ministry of Defence
which, as part of its Scientific Research Program, funded a work package that
resulted in the development of a “vulnerabilities document” (the equivalent of
Annex J listing the various behaviors in ISO C, which is missing in ISO C++,
making it hard work to identify them and to ensure they are covered by the
guidelines). Moreover, MISRA C deeply influenced NASA’s “JPL Institutional
Coding Standard for the C Programming Language” [44] and several other cod-
ing standards (see, e.g., [3, 6, 39]).

The MISRA C guidelines are concerned with aspects of C that impact on the
safety and security of the systems, whether embedded or standalone: they define
“a subset of the C language in which the opportunity to make mistakes is either
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removed or reduced” [25]. The guidelines ban critical non-definite behavior and
constrain the use of implementation-defined behavior and compiler extensions.
They also limit the use of language features that can easily be misused or misun-
derstood. Overall, the guidelines are designed to improve reliability, readability,
portability and maintainability.

There are two kinds of MISRA C guidelines.

Directive: a guideline where the information concerning compliance is gen-
erally not fully contained in the source code: requirements, specifications,
design, . . . may have to be taken into account. Static analysis tools may as-
sist in checking compliance with respect to directives if provided with extra
information not derivable from the source code.

Rule: a guideline such that information concerning compliance is fully contained
in the source code. Discounting undecidability, static analysis tools should,
in principle, be capable of checking compliance with respect to the rule.

A crucial aspect of MISRA C is that it has been designed to be used within
the framework of a documented development process where justifiable non-
compliances will be authorized and recorded as deviations. To facilitate this,
each MISRA C guideline has been assigned a category.

Mandatory: C code that complies to MISRA C must comply with every man-
datory guideline; deviation is not permitted.

Required: C code that complies to MISRA C shall comply with every required
guideline; a formal deviation is required where this is not the case.

Advisory: these are recommendations that should be followed as far as is rea-
sonably practical; formal deviation is not required, but non-compliances
should be documented.

Every organization or project may choose to treat any required guideline as if it
were mandatory and any advisory guideline as if it were required or mandatory.
The adoption of MISRA Compliance:2016 [27] allows advisory guidelines to be
downgraded to “Disapplied” when a check for compliance is considered to have
no value, e.g., in the case of adopted code10 that has not been developed so as
to comply with the MISRA C guidelines. Of course, the decision to disapply a
guideline should not be taken lightly: [27] prescribes the compilation of a guide-
line recategorization plan that must contain, among other things, the rationale
for any decision to disapply a guideline.

Each MISRA C rule is marked as decidable or undecidable according to
whether answering the question “Does this code comply?” can be done algo-
rithmically. Hence rules are marked ‘undecidable’ whenever violations depend
on run-time (dynamic) properties such as the value contained in a modifiable
object or whether control reaches a particular point. Conversely, rules are marked
‘decidable’ whenever violations depend only on compile-time (static) properties,

10 Such as the standard library, device drivers supplied by the compiler vendor or the
hardware manufacturer, middleware components, third party libraries, automatically
generated code, legacy code, . . .
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such as the types of the objects or the names and the scopes of identifiers.
Clearly, for rules marked ‘decidable’, it is theoretically possible (i.e., given ade-
quate computational resources) for a tool to emit a message if and only if the
rule is violated. However, for rules marked ‘undecidable’, any tool will have to
deal with the don’t know answer in addition to yes and no at each distinct,
relevant program point. In either case, if it is not practical (or even possible)
for the tool to decide if the code is compliant with respect to a guideline at a
particular program point, it can:

– suppress the don’t know answer (i.e., possibly false negatives, no false posi-
tives);

– emit the don’t know answer as a yes message (i.e., no false negatives, possibly
false positives);

– a combination of the above (i.e., both possibly false negatives and possibly
false positives);

– emit the don’t know answer as a caution message (i.e., no false negatives,
confined, possibly false positives).

MISRA C rules are also classified according to the amount of code that needs
to be analyzed in order to detect all violations of the rule.

Single Translation Unit: all violations within a project can be detected by
checking each translation unit independently.

System: identifying violations of a rule within a translation unit requires check-
ing more than the translation unit in question, if not all the source code that
constitutes the system.

MISRA C:2012 Amendment 1 [26], published in 2016, enhances MISRA
C:2012 so as to extend its applicability to industries and applications where
data-security is an issue. It includes 14 new guidelines (1 directive and 13 rules)
to complete the coverage of ISO/IEC TS 17961:2013 [19], a.k.a. C Secure Coding
Rules, a set of rules for secure coding in C.11 Details of such complete coverage
are provided in [29]. A similar document [30] shows that, with Amendment 1,
coverage of CERT C Coding Standard is almost complete and that, consequently,
MISRA C is today the language subset of choice for all industries developing em-
bedded systems in C that are safety- and/or security-critical [1].

For the rest of this paper, all references to MISRA C will be for the latest
published version MISRA C:2012 [25] including its Technical Corrigendum 1
[28] and Amendment 1 [26]: these will be consolidated into the forthcoming first
revision of MISRA C:2012 [2]. It should be noted that both the MISRA C and
MISRA C++ projects are active and constantly improving the guidelines and
developing new works: for instance, the MISRA C Working Group is currently
working at adding support for C11 [18] and, in response to community feedback,
at further enhancing the guidance on undefined/unspecified behaviors [2].

11 This technical specification has been slightly amended in 2016 [20].
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4 Static Analysis and MISRA C

The majority of the MISRA C guidelines are decidable, and thus compliance can
be checked by algorithms that:

– do not need nontrivial approximations of the value of program objects;
– do not need nontrivial control-flow information.

Of course, these algorithms can still be very complex. For instance, the nature of
the translation process of the C language, which includes a preprocessing phase,
is a source of complications: the preprocessing phase must be tracked precisely,
and compliance may depend on the source code before preprocessing, on the
source code after preprocessing, or on the relationship between the source code
before and after preprocessing.

The rest of this section focuses on those guidelines whose check for compli-
ance requires or significantly benefits from semantic-based analysis. Obviously
every undecidable rule has decidable approximations, but these are necessarily
characterized by a significant number of false positives unless rigid programming
schemes are adopted. For example, Rule 17.2, which disallows recursion, admits
a decidable approximation that requires finding cycles in the call graph and
flagging, as potentially non-compliant, all function calls via pointers. If function
calls via pointers are not used (i.e., the program is written in a smaller subset of
C than that strictly mandated by the rule) then there will be no false positives.

The guidelines are listed in Table 1. Note that the text provided for each
guideline is just, as indicated, a rough, very rough one-line summary, whereas
the proper description can span multiple pages. The reader is referred to [25, 26,
28] for the full details. Note that the list of guidelines in Table 1 begins with four
directives: even though checking compliance with respect to them requires infor-
mation that may not be present in the code, they involve undecidable program
properties.

Table 2 classifies the guidelines of Table 1 according to attributes of an ap-
proximate representation of the program semantics; an approximation built by
a static analysis algorithm to check compliance for the given guideline with ade-
quate precision, that is, no false negatives and relatively few false positives. The
attributes are the following:

control-flow: detecting all potential violations with a low rate of false posi-
tives requires computing an approximation that allows observing control-flow
within the program with relatively high precision;

data-flow: detecting all potential violations with a low rate of false positives
requires computing an approximation that allows observing the possible val-
ues of objects with relatively high precision; this is further refined with two
sub-attributes:

points-to: observing the values of pointer objects is important;
arithmetic: observing the values of other (i.e., non-pointer) objects (in-

cluding pointer offsets) is important.
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Table 1. MISRA C guidelines whose checking requires/benefits from semantic analysis

Guideline Rough one-line summary

D4.1 Avoid run-time failures

D4.11 Check the validity of values passed to library functions

D4.13 Resource-handling functions should be called in an appropriate sequence

D4.14 Do not trust values received from external sources

R1.3 No undefined or critical unspecified behavior

R2.1 No unreachable code

R2.2 No dead code

R8.13 Point to const-qualified type if possible

R9.1 Do not read uninitialized automatic storage

R12.2 Right-hand operand of a shift operator must be in range

R13.1 No side effects in initializers

R13.2 Do not depend on unspecified evaluation order of expressions

R13.5 No side effects in right-hand operand of && or ||

R14.1 No floating-point loop counters

R14.2 Restricted form of for loops

R14.3 No invariant controlling expressions

R17.2 No direct or indirect recursion

R17.5 Actual parameters for arrays must have an appropriate size

R17.8 Do not modify function parameters

R18.1 Pointer arithmetic must not exceed array limits

R18.2 Do not subtract pointers not pointing to the same array

R18.3 Do not compare pointers not pointing to the same object

R18.6 Pointer object must not live longer than corresponding pointees

R19.1 Objects must not be assigned or copied to overlapping objects

R21.13 Functions in <ctype.h> must not be passed out-of-spec values

R21.14 Do not use memcmp to compare null-terminated strings

R21.17 Use of functions from <string.h> must not result in buffer overflow

R21.18 size t argument of functions from <string.h> must be in range

R21.19 Do not modify objects through pointers returned by localeconv, . . .

R21.20 Pointers returned by asctime, ctime, . . . must not be reused

R22.1 All dynamically-obtained resources must be explicitly released

R22.2 Do not free memory that was not dynamically allocated

R22.3 Do not open files for read and write at the same time on different streams

R22.4 Do not attempt to write to a read-only stream

R22.5 Do not directly access the content of a FILE object

R22.6 Do not use the value of pointer to a FILE after the stream is closed

R22.7 Macro EOF must only be compared to values returned by some functions

R22.8 Reset errno before calling an errno-setting-function

R22.9 Test errno after calling an errno-setting-function

R22.10 Test errno only after calling an errno-setting-function

11



Table 2. MISRA C guidelines and main static
analysis properties

Guideline control-flow data-flow

points-to arithmetic

D4.1 X X
D4.11 X X
D4.13 X X
D4.14 X
R1.3 X X X
R2.1 X
R2.2 X X
R8.13 X
R9.1 X1 X1

R12.2 X
R13.1 X
R13.2 X
R13.5 X
R14.1 X X X
R14.2 X X
R14.3 X X
R17.2 X X
R17.5 X X
R17.8 X
R18.1 X X
R18.2 X
R18.3 X
R18.6 X X
R19.1 X X
R21.13 X
R21.14 X
R21.17 X X
R21.18 X X
R21.19 X
R21.20 X X
R22.1 X X
R22.2 X X
R22.3 X X
R22.4 X X
R22.5 X
R22.6 X X
R22.7 X X
R22.8 X
R22.9 X
R22.10 X
1 See Section 5.2 for an alternative view on how

to check compliance with respect to this rule.
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Of course, it is well known that control-flow information depends on data-flow
information and the other way around, exactly as points-to information depends
on arithmetic values and the other way around: here we only characterize the
approximation that is available at the end of the static analysis, without reference
to how it has been obtained.

Table 2 shows that semantic-based static analysis potentially plays an im-
portant role in the checking of compliance with respect to MISRA C. The actual
situation, however, is not as clear cut: this brings us to the next section.

5 Discussion

We have seen that 40 MISRA C guidelines out of 173 depend on semantic proper-
ties of the program. This implies that research in semantic static analysis is very
relevant to the MISRA C ecosystem, provided that a few important points are
taken into due consideration. These are discussed in Sections 5.1, 5.2, and 5.3.
A further opportunity for cooperation is outlined in Section 5.4.

5.1 MISRA C: Error Prevention, Not Bug Finding

As said earlier, MISRA C cannot be separated from the process of documented
software development it is part of. In particular, the use of MISRA C in its proper
context is part of an error prevention strategy which has little in common with
bug finding, i.e., the application of automatic techniques for the detection of
instances of some software errors. This point is so rarely understood that it
deserves proper explanation.

To start with, the violation of a guideline is not necessarily a software error.
For instance, let us consider Rule 11.4, which advises against converting integers
to object pointers and vice-versa. There is nothing intrinsically wrong about
converting an integer constant to a pointer when it is necessary to address mem-
ory mapped registers or other hardware features. However, such conversions are
implementation-defined and have undefined behaviors (due to possible trunca-
tion and the formation of invalid and/or misaligned pointers), so that they are
best avoided everywhere apart from the very specific instances where they are
both required and safe. This is why the deviation process is an essential part of
MISRA C: the point of a guideline is not “You should not do that” but “This
is dangerous: you may only do that if (1) it is needed, (2) it is safe, and (3) a
peer can easily and quickly be convinced of both (1) and (2).” One useful way
to think about MISRA C and the processes around it is to consider them as an
effective way of conducting a guided peer review to rule out most C language
traps and pitfalls.12

The attitude with respect to incompleteness is entirely different between the
typical audience of bug finders and the typical audience of MISRA C. Bug finders
are usually tolerant about false negatives and intolerant about false positives:
for instance, by following the development of Clang Static Analyzer13 it can be

12 We are indebted to Clayton Weimer for this observation.
13 https://clang-analyzer.llvm.org/, last accessed on July 5th, 2018.
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seen that all is done to avoid false positives with little or no regard to false
negatives. This is not the right mindset for checking compliance with respect to
MISRA C: false positives are a nuisance and should be reduced and/or confined
as much a possible, but using algorithms with false negatives implies that those
in charge of ensuring compliance will have to use other methods. So, compliance
to MISRA C is not bug finding and, of course, finding some, many or even all
causes of run-time errors does not imply compliance to MISRA C.

5.2 MISRA C: Readability, Explainability, Code Reviews

Another aspect that places MISRA C in a different camp from bug finding has to
do with the importance MISRA C assigns to reviews: code reviews, reviews of the
code against design documents, reviews of the latter against requirements. Con-
cerning design documents and requirements this is captured by Directive 3.1.
More generally, the need for code readability and explainability is clearly ex-
pressed in the rationale of many MISRA C guidelines.

This fact has some counterintuitive consequences on the use of static analysis,
which is of course crucial both for bug finding and for the (partial) automation
of MISRA C compliance checking. Consider Rule 9.1, whereby the value of an
automatic object must not be read before it has been set, since otherwise we have
undefined behavior. For bug finding, the smarter the static analysis algorithm
the better. Use of the same smart algorithm for ensuring compliance with respect
to Rule 9.1 risks obeying the letter of MISRA C but not its spirit.14 Suppose on
the specific program our smart algorithm ensures Rule 9.1 is never violated: we
have thus ruled out one source of undefined behavior, which is good. However,
the programmer, other programmers, code reviewers, quality assurance people,
one month from now or six months from now may have to:

1. ensure that the automatic objects that are the subject of the rule are indeed
initialized with the correct value;

2. confirm that the outcome of the tool is indeed correct.

If this takes more than 30 seconds or a minute per object, this is not good:
the smart static analysis algorithm can track initializations and uses even when
they are scattered across, say, switch cases nested into complex loops; a human
cannot. So, ensuring compliance with respect to Rule 9.1 with deep semantic
analysis is counterproductive to the final goal of the process of which MISRA C
is part. For that purpose it is much better to use a decidable approximation of
Rule 9.1 such as a suitable generalization of the Definite Assignment algorithm
employed by Java compilers [10, Chapter 16].

5.3 Analysis of Code Meant To Comply with MISRA C

As was already recognized in [7], despite the mentioned misunderstanding about
the nature of MISRA C, the restriction to a language subset where non-definite

14 There are many ways to do that.
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behavior and many problematic features are banned or severely regulated “can
considerably help the efficiency and precision of the static analysis.” This can
simplify and guide the design of static analyzers: for example, features of C
that are deprecated by MISRA C need not be handled precisely and efficiently
when the intended application domain follows MISRA C. It is not a coincidence
that such features (e.g., unions, unrestricted pointer casts, backward gotos) pose
significant problems to the designers of static analyses tools.

5.4 Annotations

Another area where there is significant potential for collaboration between the
static analysis community and the MISRA C ecosystem concerns program an-
notations. During the last 20 years there have been a number of proposals for
annotation languages allowing programmers to provide partial specifications of
program components. These languages are usually tied to one specific tool, e.g.:
the annotation language of the Frege Program Prover [45]; the annotation lan-
guage of eCv (Escher C Verifier) [8], the annotation language of Frama-C, ACSL
(ANSI/ISO C Specification Language) [5], and its executable variant E-ACSL
[38]; the annotation language of VCC [9]; the annotation language of VeriFast
[21, 35]. A comparison of these tools, with particular regard to annotation lan-
guages and the potential for application in industry, is available in [36].

The MISRA C Working Group is working, among other things, on a tool-
agnostic annotation language for C. The main objectives of this endeavor are:

1. to improve the quality (precision) of static analysis by allowing the provision
of information regarding the developer’s intent, the required state in function
preconditions and so on;

2. to make it easier to work with adopted code (legacy code, library code) that
has not been written to comply with MISRA C [27];

3. to do this in a way that will be accessible to the majority of C/C++ pro-
grammers in a form that is easy to read and understand.

6 Conclusion

In this paper, having explained some of the advantages and disadvantages of
using the C language for embedded systems and how the uncontrolled use of
C conflicts with both safety and security requirements, we described the back-
ground, motivation and history of the MISRA project. We have explained how
the MISRA C guidelines define a standardized structured subset of the C lan-
guage; making it easier, for code that follows these guidelines (possibly with
well-documented deviations), to verify that important and necessary safety and
security properties hold.

We have looked at the different kinds of the MISRA C guidelines, distin-
guishing between those that can be automatically verified from the code syntax,
those that need information beyond that contained in the source code, and those
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for which the question as to whether the code is compliant is algorithmically un-
decidable. We have noted also that, for all guidelines, due to the size and com-
plexity of modern software, automatic tools perform an essential function in the
checking or partial checking of compliance. We have highlighted the fundamental
differences between so-called bug finding and the application of MISRA C in the
context of the error prevention strategy it is part of.

In this paper we have outlined both the role of static analysis in the automatic
checking of compliance with respect to MISRA C, and the role of the MISRA C
language subset in enabling a wider application of formal methods to industrial
software. It is hoped that this will contribute to improved collaboration between
the two communities, so that static analysis will be able to play a fuller part
in the software development of critical systems leading to improved safety and
security.
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